Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Commun ; 15(1): 6158, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039045

RESUMO

Common and rare alleles are now being annotated across millions of human genomes, and omics technologies are increasingly being used to develop health and treatment recommendations. However, these alleles have not yet been systematically characterized relative to aerospace medicine. Here, we review published alleles naturally found in human cohorts that have a likely protective effect, which is linked to decreased cancer risk and improved bone, muscular, and cardiovascular health. Although some technical and ethical challenges remain, research into these protective mechanisms could translate into improved nutrition, exercise, and health recommendations for crew members during deep space missions.


Assuntos
Alelos , Medicina de Precisão , Voo Espacial , Humanos , Medicina de Precisão/métodos , Medicina Aeroespacial , Genoma Humano , Neoplasias/genética , Neoplasias/terapia
2.
Nat Commun ; 15(1): 4825, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862542

RESUMO

Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.


Assuntos
Astronautas , Radiação Cósmica , MicroRNAs , Voo Espacial , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Radiação Cósmica/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Masculino , Mitocôndrias/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Feminino , Adulto
3.
Nat Commun ; 15(1): 4814, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862469

RESUMO

A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.


Assuntos
Antígenos CD36 , Ácidos Nucleicos Livres , DNA Mitocondrial , Voo Espacial , Ausência de Peso , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Humanos , Ácidos Nucleicos Livres/sangue , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Astronautas , RNA/metabolismo , RNA/genética , Biópsia Líquida/métodos , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Feminino , Pessoa de Meia-Idade , Adulto
4.
Commun Biol ; 7(1): 692, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862620

RESUMO

Organismal adaptations to spaceflight have been characterized at the molecular level in model organisms, including Drosophila and C. elegans. Here, we extend molecular work to energy metabolism and sex hormone signaling in mice and humans. We found spaceflight induced changes in insulin and estrogen signaling in rodents and humans. Murine changes were most prominent in the liver, where we observed inhibition of insulin and estrogen receptor signaling with concomitant hepatic insulin resistance and steatosis. Based on the metabolic demand, metabolic pathways mediated by insulin and estrogen vary among muscles, specifically between the soleus and extensor digitorum longus. In humans, spaceflight induced changes in insulin and estrogen related genes and pathways. Pathway analysis demonstrated spaceflight induced changes in insulin resistance, estrogen signaling, stress response, and viral infection. These data strongly suggest the need for further research on the metabolic and reproductive endocrinologic effects of space travel, if we are to become a successful interplanetary species.


Assuntos
Estrogênios , Insulina , Voo Espacial , Animais , Insulina/metabolismo , Estrogênios/metabolismo , Humanos , Camundongos , Masculino , Feminino , Transcriptoma , Transdução de Sinais , Camundongos Endogâmicos C57BL , Metabolismo Energético/genética , Resistência à Insulina/genética , Fígado/metabolismo , Adulto , Regulação da Expressão Gênica
5.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542258

RESUMO

As a space project, in "Stem Cells" by the Japan Aerospace Exploration Agency (JAXA), frozen mouse ES cells were stored on the International Space Station (ISS) in the Minus Eighty Degree Laboratory Freezer for ISS (MELFI) for 1584 days. After taking these cells back to the ground, the cells were thawed and cultured, and their gene expressions were comprehensively analyzed using RNA sequencing in order to elucidate the early response of the cells to long-time exposure to space radiation consisting of various ionized particles. The comparisons of gene expression involved in double-stranded break (DSB) repair were examined. The expressions of most of the genes that were involved in homologous recombination (HR) and non-homologous end joining (NHEJ) were not significantly changed between the ISS-stocked cells and ground-stocked control cells. However, the transcription of Trp53inp1 (tumor protein 53 induced nuclear protein-1), Cdkn1a (p21), and Mdm2 genes increased in ISS-stocked cells as well as Fe ion-irradiated cells compared to control cells. This suggests that accumulated DNA damage caused by space radiation exposure would activate these genes, which are involved in cell cycle arrest for repair and apoptosis in a p53-dependent or -independent manner, in order to prevent cells with damaged genomes from proliferating and forming tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Reparo do DNA , Reparo do DNA por Junção de Extremidades , Análise de Sequência de RNA , Perfilação da Expressão Gênica
7.
Cell Rep ; 42(4): 112289, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952339

RESUMO

Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.


Assuntos
Fibras Musculares de Contração Rápida , Cadeias Pesadas de Miosina , Camundongos , Animais , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo
8.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578835

RESUMO

Medullary thymic epithelial cells (mTECs) are critical for self-tolerance induction in T cells via promiscuous expression of tissue-specific antigens (TSAs), which are controlled by the transcriptional regulator, AIRE. Whereas AIRE-expressing (Aire+) mTECs undergo constant turnover in the adult thymus, mechanisms underlying differentiation of postnatal mTECs remain to be discovered. Integrative analysis of single-cell assays for transposase-accessible chromatin (scATAC-seq) and single-cell RNA sequencing (scRNA-seq) suggested the presence of proliferating mTECs with a specific chromatin structure, which express high levels of Aire and co-stimulatory molecules, CD80 (Aire+CD80hi). Proliferating Aire+CD80hi mTECs detected using Fucci technology express a minimal number of Aire-dependent TSAs and are converted into quiescent Aire+CD80hi mTECs expressing high levels of TSAs after a transit amplification. These data provide evidence for the existence of transit-amplifying Aire+mTEC precursors during the Aire+mTEC differentiation process of the postnatal thymus.


Assuntos
Cromatina , Análise de Célula Única , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Timo , Transposases/metabolismo
9.
Elife ; 102021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949947

RESUMO

In vivo function of CDK5 and Abl enzyme substrate 2 (Cables2), belonging to the Cables protein family, is unknown. Here, we found that targeted disruption of the entire Cables2 locus (Cables2d) caused growth retardation and enhanced apoptosis at the gastrulation stage and then induced embryonic lethality in mice. Comparative transcriptome analysis revealed disruption of Cables2, 50% down-regulation of Rps21 abutting on the Cables2 locus, and up-regulation of p53-target genes in Cables2d gastrulas. We further revealed the lethality phenotype in Rps21-deleted mice and unexpectedly, the exon 1-deleted Cables2 mice survived. Interestingly, chimeric mice derived from Cables2d ESCs carrying exogenous Cables2 and tetraploid wild-type embryo overcame gastrulation. These results suggest that the diminished expression of Rps21 and the completed lack of Cables2 expression are intricately involved in the embryonic lethality via the p53 pathway. This study sheds light on the importance of Cables2 locus in mouse embryonic development.


Assuntos
Proteínas de Ciclo Celular/genética , Gastrulação/genética , Expressão Gênica , Proteínas Ribossômicas/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenótipo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Regulação para Cima
10.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34011606

RESUMO

Regulatory T (Treg) cells that express forkhead box P3 (Foxp3) are pivotal for immune tolerance. Although inflammatory mediators cause Foxp3 instability and Treg cell dysfunction, their regulatory mechanisms remain incompletely understood. Here, we show that the transfer of Treg cells deficient in the activating immunoreceptor DNAM-1 ameliorated the development of graft-versus-host disease better than did wild-type Treg cells. We found that DNAM-1 competes with T cell immunoreceptor with Ig and ITIM domains (TIGIT) in binding to their common ligand CD155 and therefore regulates TIGIT signaling to down-regulate Treg cell function without DNAM-1-mediated intracellular signaling. DNAM-1 deficiency augments TIGIT signaling; this subsequently inhibits activation of the protein kinase B-mammalian target of rapamycin complex 1 pathway, resulting in the maintenance of Foxp3 expression and Treg cell function under inflammatory conditions. These findings demonstrate that DNAM-1 regulates Treg cell function via TIGIT signaling and thus, it is a potential molecular target for augmenting Treg function in inflammatory diseases.


Assuntos
Antígenos de Diferenciação de Linfócitos T/genética , Fatores de Transcrição Forkhead/genética , Doença Enxerto-Hospedeiro/genética , Receptores Imunológicos/genética , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Antígenos de Diferenciação de Linfócitos T/imunologia , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Imunológicos/imunologia , Receptores Virais/genética , Receptores Virais/imunologia , Transdução de Sinais , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/transplante , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Irradiação Corporal Total
11.
Cancers (Basel) ; 13(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916417

RESUMO

Our previous integrative study in gastric cancer discovered cryptic promoter activation events that drive the expression of important developmental genes. However, it was unclear if such cancer-associated epigenetic changes occurred in cancer cells or other cell types in bulk tissue samples. An integrative analysis consisting of RNA-Seq and H3K4me3 ChIP-Seq was used. This workflow was applied to a set of matched normal lung tissues and non-small cell lung cancer (NSCLC) tissues, for which the stroma and tumor cell parts could be isolated by laser-microdissection microscopy (LMD). RNA-Seq analysis showed subtype-specific differential expressed genes and enriched pathways in NSCLC. ChIP-Seq analysis results suggested that the proximal altered H3K4me3 regions were located at differentially expressed genes involved in cancer-related pathways, while altered distal H3K4me3 regions were annotated with enhancer activity of cancer regulatory genes. Interestingly, integration with ENCODE data revealed that proximal tumor-gained promoters were associated with EZH2 and SUZ12 occupancies, which are the core components of polycomb repressive complex 2 (PRC2). This study used LMD on clinical samples for an integrative analysis to overcome the tissue heterogeneity problem in cancer research. The results also contribute to the overall understanding of genetic and epigenetic dysregulation of lung malignancy.

12.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563837

RESUMO

Nrf2 is a redox-sensitive transcription factor that is thought to be important in protection against intracellular pathogens. To determine the protective role of Nrf2 in the host defense against Mycobacterium avium complex (MAC), both wild-type and Nrf2-deficient mice were intranasally infected with MAC bacteria. Nrf2-deficient mice were highly susceptible to MAC bacteria compared with wild-type mice. There were no significant changes in the levels of oxidative stress and Th1 cytokine production between genotypes. Comprehensive transcriptome analysis showed that the expressions of Nramp1 and HO-1 were much lower in the infected lungs, and the expression of Nramp1 was especially lower in alveolar macrophages of Nrf2-deficient mice than of wild-type mice. Electron microscopy showed that many infected alveolar macrophages from Nrf2-deficient mice contained a large number of intracellular MAC bacteria with little formation of phagolysosomes, compared with those from wild-type mice. Treatment with sulforaphane, an activator of Nrf2, increased resistance to MAC with increased lung expression of Nramp1 and HO-1 in wild-type mice. These results indicate that Nramp1 and HO-1, regulated by Nrf2, are essential in defending against MAC infection due to the promotion of phagolysosome fusion and granuloma formation, respectively. Thus, Nrf2 is thought to be a critical determinant of host resistance to MAC infection.IMPORTANCE Nontuberculous mycobacteria (NTM) are an important cause of morbidity and mortality in pulmonary infections. Among them, Mycobacterium avium complex (MAC) is the most common cause of pulmonary NTM disease worldwide. It is thought that both environmental exposure and host susceptibility are required for the establishment of pulmonary MAC disease, because pulmonary MAC diseases are most commonly observed in slender, postmenopausal women without a clearly recognized immunodeficiency. However, host factors that regulate MAC susceptibility have not been elucidated until now. This study shows that Nrf2 is a critical regulator of host susceptibility to pulmonary MAC disease by promoting phagolysosome fusion and granuloma formation via activating Nramp1 and HO-1 genes, respectively. The Nrf2 system is activated in alveolar macrophages, the most important cells during MAC infection, as both the main reservoir of infection and bacillus-killing cells. Thus, augmentation of Nrf2 might be a useful therapeutic approach for protection against pulmonary MAC disease.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica/imunologia , Granuloma/microbiologia , Heme Oxigenase-1/genética , Interações entre Hospedeiro e Microrganismos , Proteínas de Membrana/genética , Fator 2 Relacionado a NF-E2/genética , Animais , Proteínas de Transporte de Cátions/imunologia , Feminino , Granuloma/imunologia , Heme Oxigenase-1/imunologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Complexo Mycobacterium avium/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Estresse Oxidativo
13.
PLoS One ; 15(12): e0236771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33320849

RESUMO

BACKGROUNDS: Sevoflurane is a most frequently used volatile anesthetics, but its molecular mechanisms of action remain unclear. We hypothesized that specific genes play regulatory roles in brain exposed to sevoflurane. Thus, we aimed to evaluate the effects of sevoflurane inhalation and identify potential regulatory genes by RNA-seq analysis. METHODS: Eight-week old mice were exposed to sevoflurane. RNA from medial prefrontal cortex, striatum, hypothalamus, and hippocampus were analysed using RNA-seq. Differently expressed genes were extracted and their gene ontology terms were analysed using Metascape. These our anesthetized mouse data and the transcriptome array data of the cerebral cortex of sleeping mice were compared. Finally, the activities of transcription factors were evaluated using a weighted parametric gene set analysis (wPGSA). JASPAR was used to confirm the existence of binding motifs in the upstream sequences of the differently expressed genes. RESULTS: The gene ontology term enrichment analysis result suggests that sevoflurane inhalation upregulated angiogenesis and downregulated neural differentiation in each region of brain. The comparison with the brains of sleeping mice showed that the gene expression changes were specific to anesthetized mice. Focusing on individual genes, sevoflurane induced Klf4 upregulation in all sampled parts of brain. wPGSA supported the function of KLF4 as a transcription factor, and KLF4-binding motifs were present in many regulatory regions of the differentially expressed genes. CONCLUSIONS: Klf4 was upregulated by sevoflurane inhalation in the mouse brain. The roles of KLF4 might be key to elucidating the mechanisms of sevoflurane induced functional modification in the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Sevoflurano/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Ontologia Genética , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fatores de Transcrição/genética , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
14.
Life (Basel) ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933026

RESUMO

Rodent models have been widely used as analogs for estimating spaceflight-relevant molecular mechanisms in human tissues. NASA GeneLab provides access to numerous spaceflight omics datasets that can potentially generate novel insights and hypotheses about fundamental space biology when analyzed in new and integrated fashions. Here, we performed a pilot study to elucidate space biological mechanisms across tissues by reanalyzing mouse RNA-sequencing spaceflight data archived on NASA GeneLab. Our results showed that clock gene expressions in spaceflight mice were altered compared with those in ground control mice. Furthermore, the results suggested that spaceflight promotes asynchrony of clock gene expressions between peripheral tissues. Abnormal circadian rhythms are associated not only with jet lag and sleep disorders but also with cancer, lifestyle-related diseases, and mental disorders. Overall, our findings highlight the importance of elucidating the causes of circadian rhythm disruptions using the unique approach of space biology research to one day potentially develop countermeasures that benefit humans on Earth and in space.

15.
PLoS One ; 15(2): e0228685, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012199

RESUMO

The vestibular system controls balance, posture, blood pressure, and gaze. However, the roles of the vestibular system in energy and glucose metabolism remain unknown. We herein examined the roles of the vestibular system in obesity and impaired glucose metabolism using mice with vestibular lesions (VL) fed a high-sucrose/high-fat diet (HSHFD). VL was induced by surgery or arsenic. VL significantly suppressed body fat enhanced by HSHFD in mice. Glucose intolerance was improved by VL in mice fed HSHFD. VL blunted the levels of adipogenic factors and pro-inflammatory adipokines elevated by HSHFD in the epididymal white adipose tissue of mice. A ß-blocker antagonized body fat and glucose intolerance enhanced by HSHFD in mice. The results of an RNA sequencing analysis showed that HSHFD induced alterations in genes, such as insulin-like growth factor-2 and glial fibrillary acidic protein, in the vestibular nuclei of mice through the vestibular system. In conclusion, we herein demonstrated that the dysregulation of the vestibular system influences an obese state and impaired glucose metabolism induced by HSHFD in mice. The vestibular system may contribute to the regulation of set points under excess energy conditions.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Obesidade/metabolismo , Vestíbulo do Labirinto/fisiopatologia , Adipocinas/metabolismo , Animais , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia
16.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561588

RESUMO

Multiple unique environmental factors such as space radiation and microgravity (µG) pose a serious threat to human gene stability during space travel. Recently, we reported that simultaneous exposure of human fibroblasts to simulated µG and radiation results in more chromosomal aberrations than in cells exposed to radiation alone. However, the mechanisms behind this remain unknown. The purpose of this study was thus to obtain comprehensive data on gene expression using a three-dimensional clinostat synchronized to a carbon (C)-ion or X-ray irradiation system. Human fibroblasts (1BR-hTERT) were maintained under standing or rotating conditions for 3 or 24 h after synchronized C-ion or X-ray irradiation at 1 Gy as part of a total culture time of 2 days. Among 57,773 genes analyzed with RNA sequencing, we focused particularly on the expression of 82 cell cycle-related genes after exposure to the radiation and simulated µG. The expression of cell cycle-suppressing genes (ABL1 and CDKN1A) decreased and that of cell cycle-promoting genes (CCNB1, CCND1, KPNA2, MCM4, MKI67, and STMN1) increased after C-ion irradiation under µG. The cell may pass through the G1/S and G2 checkpoints with DNA damage due to the combined effects of C-ions and µG, suggesting that increased genomic instability might occur in space.


Assuntos
Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Radiação não Ionizante , Transcriptoma , Ausência de Peso , Perfilação da Expressão Gênica , Humanos
17.
Lung Cancer ; 136: 94-97, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31472337

RESUMO

OBJECTIVE: Invasive mucinous adenocarcinoma (IMA) is a variant of lung adenocarcinoma. We present one case of IMA with mixed mucinous and non-mucinous components, suggesting stepwise progression within the tumor. MATERIAL AND METHOD: The two different components of IMA were separately examined by immunohistochemistry and performed amplicon sequencing (Ion Ampliseq Cancer Hotspot Panel v2, ilumina, San Diego, CA). RESULT: Macroscopically, the IMA contained a small and well demarcated solid part. Tumor cells in the main part showed abundant intracytoplasmic mucin, whereas those in the solid part showed scant intracytoplasmic mucin and high-grade nuclear atypia. Both parts harbored the same KRAS p.G12 V mutation. The amplicon sequencing of the IMA showed oncogenic TP53 p.P278 L mutation was detected only in the solid part. CONCLUSION: Oncogenetic TP53 mutation might promote stepwise progression of this case of IMA.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma Mucinoso/diagnóstico , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Idoso de 80 Anos ou mais , Biomarcadores , Biópsia , Progressão da Doença , Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Mucinas/genética , Mucinas/metabolismo , Mutação , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
18.
Genes Cells ; 24(9): 627-635, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31294895

RESUMO

Cellular senescence plays an important role in aging and is induced by cyclin-dependent kinase (Cdk) inhibitors that accumulate following stresses during aging. However, the underlying mechanism remains elusive. Herein, we demonstrate that activating transcription factor 7 (ATF7), the stress-responsive recruiter of histone H3K9 di- and trimethyltransferases, functions in the accumulation of Cdk inhibitors. Atf7-deficient (Atf7-/- ) mice have a shorter lifespan than wild-type (WT) mice. Levels of p16Ink4a Cdk inhibitor mRNA increased with age more rapidly in Atf7-/- mice than in WT animals. ATF7 binds to the p16Ink4a gene promoter and was released with age. Consistently, histone H3K9me2 levels on the p16Ink4a gene promoter were lower in Atf7-/- mice than in WT animals. Similar results were obtained when Atf7-/- and WT mouse embryonic fibroblasts (MEFs) were cultured under 20% oxygen conditions, which induces cellular senescence via oxidative stress. Phosphorylation of ATF7 by p38 was also increased with the passage of MEFs, consistent with previous observations that ATF7 phosphorylation by p38 induces its release from chromatin. These results indicate that stress-induced and ATF7-dependent epigenetic changes on p16Ink4a genes play an important role in cellular senescence.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Senescência Celular , Epigênese Genética , Estresse Oxidativo , Fatores Ativadores da Transcrição/genética , Animais , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Histonas/genética , Histonas/metabolismo , Longevidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Cancer Sci ; 110(8): 2431-2441, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31144406

RESUMO

The landscape of genetic alterations in disease models such as transgenic mice or mice with carcinogen-induced tumors has provided a huge amount of information that has shed light on the process of tumorigenesis in human non-small-cell lung cancer (NSCLC). We have previously identified stratifin (SFN) as a potent oncogene, and generated SFN-transgenic (Tg-SPC-SFN+/- ) mice, which express human SFN (hSFN) only in the lung. Here, we have found that carcinogen nicotine-derived nitrosaminoketone (NNK)-induced tumors developing in Tg-SPC-SFN+/- mice show a similar histology to human lung adenocarcinoma and exhibit high hSFN expression. In order to compare the genetic characteristics of Tg-SPC-SFN+/- tumors and human lung adenocarcinoma, the former were subjected to whole-exome sequencing. Interestingly, Tg-SPC-SFN+/- tumors showed the distinct distribution of exonic mutations and high number of mutated genes and transversion. Moreover, Tg-SPC-SFN+/- tumors showed 73 genes that were commonly detected in more than 2 tumors, mutations of which were also found in human lung adenocarcinoma. The expression levels of some of these genes were significantly associated with the clinical outcome of lung adenocarcinoma patients. Additionally, mutated genes in Tg-SPC-SFN+/- tumors were closely associated with key canonical pathways such as PI3K/AKT signaling and apoptosis signaling. These results suggest that SFN overexpression is a universal abnormality in human lung adenocarcinogenesis and Tg-SPC-SFN+/- tumors recapitulate key features of major human lung adenocarcinoma. Therefore, Tg-SPC-SFN+/- mice provide a useful model for clarifying the molecular mechanism underlying lung adenocarcinogenesis.


Assuntos
Proteínas 14-3-3/genética , Adenocarcinoma de Pulmão/induzido quimicamente , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinógenos/farmacologia , Exorribonucleases/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mutação/genética , Células A549 , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Sequenciamento do Exoma/métodos
20.
Sci Rep ; 9(1): 7654, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31114014

RESUMO

Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes.


Assuntos
Fator de Transcrição GATA1/metabolismo , Voo Espacial , Baço/metabolismo , Transcriptoma , Animais , Regulação para Baixo , Eritropoese , Fator de Transcrição GATA1/genética , Camundongos , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Ausência de Peso/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA