Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(11): 1564-1569, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38406836

RESUMO

In this comprehensive study, we evaluated the feasibility of using hydrogen instead of helium as a carrier gas in a GC-MS/MS system for pesticide residue analysis, spanning three matrices: pepper, tomato, and zucchini. Initial assessments focused on the ion source's chemical inertness, employing nitrobenzene as a benchmark to monitor the hydrogenation process. A method with a duration of less than 12 minutes was developed, achieving good chromatographic peak resolution attributable to the enhanced chromatographic performance of hydrogen as a carrier gas. The study emphasized the optimization of system parameters, testing various ion source temperatures, detector voltages, and injection volumes. Sensitivity assessments, based on the DG-SANTE criteria, indicated that the majority of compounds were identifiable at a concentration of 5 µg kg-1 (81% in tomato, 84% in pepper and 73% in zucchini). Detailed validation for reproducibility, matrix effects, and linearity across 150 pesticides unveiled generally favorable outcomes, with a notable majority of compounds displaying low matrix effects, satisfactory linearity ranges and good reproducibility with most compounds returning a relative standard deviation (RSD) below 10%. When applied to 15 real samples, the hydrogen-based system's performance was juxtaposed against a helium-based counterpart, revealing that results are very comparable between both systems. This comparative approach highlights hydrogen's potential as a reliable and efficient carrier gas in pesticide residue analysis for routine food control laboratories, overcoming difficulties resulting from the lack of helium supplies.


Assuntos
Resíduos de Praguicidas , Praguicidas , Espectrometria de Massas em Tandem/métodos , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Verduras/química , Praguicidas/análise , Hélio/análise , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Reprodutibilidade dos Testes , Hidrogênio/análise
2.
Chemosphere ; 333: 138959, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209851

RESUMO

The sorption and vector effect of microplastics on the transfer of pesticides and polycyclic aromatic hydrocarbons (PAHs), as well as its impact on agriculture remain largely unexplored. This comparative study is first to investigate the sorption behavior of different pesticides and PAHs at environmentally realistic concentrations by model microplastics and microplastics derived from polyethylene mulch films. Sorption was found to be up to 90% higher in the case of microplastics derived from mulch films as opposed to pure polyethylene microspheres. For microplastics from mulch films, the sorption percentages for pesticides in media containing CaCl2 were reported to be: pyridate (75.68% and 52.44%), fenazaquin (48.54% and 32.02%), pyridaben (45.04% and 56.70%), bifenthrin (74.27% and 25.88%), etofenprox (82.16% and 54.16%) and pyridalyl (97.00% and 29.74%) at 5 µg/L and 200 µg/L pesticide concentration levels respectively. For PAHs, the sorption amounts were: naphthalene (22.03% and 48.00%), fluorene (38.99% and 39.00%), anthracene (64.62% and 68.02%) and pyrene (75.65% and 86.38%) at 5 µg/L and 200 µg/L PAH concentration levels respectively. Sorption was influenced by the octanol-water partition coefficient (log Kow) and ionic strength. Kinetics of the process in the case of sorption of pesticides were best explained by pseudo-first order kinetic model (R2 between 0.90 and 0.98) while the best fitting isotherm model was Dubinin-Radushkevich (R2 between 0.92 and 0.99). Results suggest the presence of surface level physi-sorption through a micropore volume filling mechanism and the role of hydrophobic and electrostatic forces. Pesticide desorption data in polyethylene mulch films indicate that pesticides with high log Kow were almost completely retained in mulch films, while those with lower log Kow were desorbed rapidly into the surrounding media. Our study highlights the role of microplastics from plastic mulch films as vectors for pesticide and PAH transport at environmentally realistic concentrations and the factors that influence it.


Assuntos
Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Plásticos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Microplásticos/química , Agricultura , Polietileno/química , Adsorção , Poluentes Químicos da Água/análise
3.
Food Chem ; 417: 135852, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924723

RESUMO

Microwavable plastic food containers can be a source of toxic substances. Plastic materials such as polypropylene polymers are typically employed as safe materials in food packaging, but recent research demonstrates the migration of plastic substances or their by-products to food simulants, to foodstuff, and, more recently, to the human body through food consumption. However, a thorough evaluation of foodstuff in food contact materials under cooking conditions has not yet been undertaken. Here we show for the first time that plastic migrants present in food contact materials can react with natural food components resulting in a compound that combines a UV-photoinitiator (2-hydroxy-2-methyl-1-phenylpropan-1-one) with maltose from potato starch; this has been identified after cooking potatoes in microwavable plastic food containers. Additionally, polypropylene glycol substances have been found to transfer into food through microwave cooking. Identifying these substances formed in situ requires state-of-the-art high-resolution mass spectrometry instrumentation and metabolomics-based strategies.


Assuntos
Plásticos , Polipropilenos , Humanos , Plásticos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polímeros/análise , Embalagem de Alimentos , Culinária , Contaminação de Alimentos/análise
4.
J Agric Food Chem ; 67(46): 12626-12632, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31062971

RESUMO

This study describes a comprehensive comparison between supercritical fluid chromatography (SFC) and gas chromatography (GC) coupled to mass spectrometry for the analysis of pyrethroids in vegetable matrices. The ionization process used was electrospray ionization (ESI) in SFC and electron ionization in GC. In general, liquid chromatography coupled to mass spectrometry with ESI sources provides poor results for pyrethroid detection, as described in previous literature. A total of 14 pyrethroids were selected, together with 6 representative matrices. The differences in chromatographic separation and ionization process were assessed. Similar results were obtained in terms of sensitivity (limits of quantification close to 2 µg/kg, injecting the same amount of sample), matrix effect, and linearity. A total of 17 real samples were analyzed by both systems, obtaining similar results. These data suggest that SFC offers a suitable alternative to GC in the analysis of pyrethroids and allows for their inclusion in a wider multiresidue method.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Inseticidas/química , Piretrinas/química , Espectrometria de Massas em Tandem/métodos , Verduras/química , Contaminação de Alimentos/análise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA