Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Immunol Immunopathol ; 213: 109887, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31307668

RESUMO

Chlamydia abortus produces ovine enzootic abortion (OEA). Symptoms are not observed until the organism colonises the placenta, eventually causing abortion. Infected animals become carriers and will shed the organism in the following oestruses. This process suggests that sex hormones might play an important role in the physiopathology of OEA, affecting the success of chlamydial clearance and also jeopardising the effectiveness of vaccination. However, the mechanisms through which sex hormones are involved in chlamydial pathogenicity remain unclear. The aim of this study, therefore, was to determine the effect of progesterone on the immune response against C. abortus and on the protection conferred by an experimental inactivated vaccine in sheep. Eighteen sheep were ovariectomised and divided into four groups: vaccinated and progesterone-treated (V-PG), vaccinated and non-treated (V-NT), non-vaccinated and non-treated (NV-NT) and non-vaccinated and progesterone-treated sheep (NV-PG). Animals from both PG groups were treated with commercial medroxyprogesterone acetate impregnated intravaginal sponges before and during the vaccination (V-PG) or just before challenge (NV-PG). The animals from both V groups were subcutaneously immunised with an experimental inactivated vaccine, which was seen to confer high protection in previous studies. All sheep were challenged intratracheally with C. abortus strain AB7 and were sacrificed on day 8 post-infection. Morbidity was measured as the variation in rectal temperature and samples of sera were collected for antibody and cytokine (IFN-γ and IL-10) analysis by commercial ELISA. In addition, lung and lymph node samples were collected for chlamydial detection by qPCR and for histopathological and immunohistochemical analyses. Sheep from the V-PG group showed less severe or no lesions and lower morbidity than the other groups. They also had the highest abundance of regulatory T-cells. The sheep from V-NT also manifested high antibody levels against C. abortus and less severe lesions than those observed in non-vaccinated sheep, which showed high morbidity, low antibody levels and severe lesions, especially in NV-NT. These results confirm the effectiveness of the experimental vaccine employed and suggest that progesterone could enhance the effect.


Assuntos
Vacinas Bacterianas/uso terapêutico , Infecções por Chlamydia/veterinária , Imunidade Humoral , Progesterona/administração & dosagem , Doenças dos Ovinos/imunologia , Aborto Animal/imunologia , Aborto Animal/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/imunologia , Chlamydia/imunologia , Infecções por Chlamydia/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Ovinos , Doenças dos Ovinos/microbiologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/uso terapêutico
2.
BMC Vet Res ; 15(1): 259, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340824

RESUMO

BACKGROUND: Chlamydia abortus, an obligate intracellular pathogen with an affinity for placenta, causes reproductive failure. In non-pregnant animals, an initial latent infection is established until the next gestation, when the microorganism is reactivated, causing abortion. The precise mechanisms that trigger the awakening of C. abortus are still unknown. Sexual hormones such as estradiol and progesterone have been shown to affect the outcome of infection in other species of the family Chlamydiaceae, while estrogens increase chlamydial infection, progesterone has the opposite effect. To try to establish whether there is a relationship between these events and the latency/ reactivation of C. abortus in the reproductive tract of small ruminants, ovine endometrial (LE) and trophoblastic (AH-1) cells were treated with estradiol or progesterone prior to their infection with C. abortus. The results are compared with those obtained for treatment with penicillin prior to infection, which is a well-established model for studying persistent infection in other chlamydial species. Cells were examined by transmission electron microscopy, and an mRNA expression analysis of 16 genes related to the chlamydial developmental cycle was made. RESULTS: The changes observed in this study by the action of sex hormones seem to depend on the type of cell where the infection develops. In addition, while the changes are morphologically similar to those induced by treatment with penicillin, the patterns of gene expression are different. Gene expression patterns therefore, seem to depend on the persistence induced models of C. abortus used. Hormone treatments induced aberrant forms in infected endometrial cells but did not affect the chlamydial morphology in trophoblast cells. At the genetic level, hormones did not induce significant changes in the expression of the studied genes. CONCLUSIONS: The results suggest that penicillin induces a state of persistence in in vitro cultured C. abortus with characteristic morphological features and gene transcriptional patterns. However, the influence of hormones on the C. abortus developmental cycle is mediated by changes in the host cell environment. Furthermore, a persistent state in C. abortus cannot be characterised by a single profile of gene expression pattern, but may change depending on the model used to induce persistence.


Assuntos
Chlamydia/efeitos dos fármacos , Estradiol/farmacologia , Progesterona/farmacologia , Animais , Linhagem Celular , Chlamydia/crescimento & desenvolvimento , Chlamydia/ultraestrutura , Infecções por Chlamydia/veterinária , Feminino , Expressão Gênica , Microscopia Eletrônica de Transmissão/veterinária , Penicilinas/administração & dosagem , RNA Mensageiro , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA