Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 80, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922832

RESUMO

BACKGROUND: Premature birth, perinatal inflammation, and life-saving therapies such as postnatal oxygen and mechanical ventilation are strongly associated with the development of bronchopulmonary dysplasia (BPD); these risk factors, alone or combined, cause lung inflammation and alter programmed molecular patterns of normal lung development. The current knowledge on the molecular regulation of lung development mainly derives from mechanistic studies conducted in newborn rodents exposed to postnatal hyperoxia, which have been proven useful but have some limitations. METHODS: Here, we used the rabbit model of BPD as a cost-effective alternative model that mirrors human lung development and, in addition, enables investigating the impact of premature birth per se on the pathophysiology of BPD without further perinatal insults (e.g., hyperoxia, LPS-induced inflammation). First, we characterized the rabbit's normal lung development along the distinct stages (i.e., pseudoglandular, canalicular, saccular, and alveolar phases) using histological, transcriptomic and proteomic analyses. Then, the impact of premature birth was investigated, comparing the sequential transcriptomic profiles of preterm rabbits obtained at different time intervals during their first week of postnatal life with those from age-matched term pups. RESULTS: Histological findings showed stage-specific morphological features of the developing rabbit's lung and validated the selected time intervals for the transcriptomic profiling. Cell cycle and embryo development, oxidative phosphorylation, and WNT signaling, among others, showed high gene expression in the pseudoglandular phase. Autophagy, epithelial morphogenesis, response to transforming growth factor ß, angiogenesis, epithelium/endothelial cells development, and epithelium/endothelial cells migration pathways appeared upregulated from the 28th day of gestation (early saccular phase), which represents the starting point of the premature rabbit model. Premature birth caused a significant dysregulation of the inflammatory response. TNF-responsive, NF-κB regulated genes were significantly upregulated at premature delivery and triggered downstream inflammatory pathways such as leukocyte activation and cytokine signaling, which persisted upregulated during the first week of life. Preterm birth also dysregulated relevant pathways for normal lung development, such as blood vessel morphogenesis and epithelial-mesenchymal transition. CONCLUSION: These findings establish the 28-day gestation premature rabbit as a suitable model for mechanistic and pharmacological studies in the context of BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Nascimento Prematuro , Animais , Gravidez , Feminino , Coelhos , Recém-Nascido , Humanos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Nascimento Prematuro/metabolismo , Hiperóxia/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Proteômica , Animais Recém-Nascidos , Pulmão/metabolismo , Inflamação/metabolismo
2.
Pediatr Res ; 93(3): 541-550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35701606

RESUMO

BACKGROUND: The pathogenesis of neonatal meconium aspiration syndrome (MAS) involves meconium-induced lung inflammation and surfactant inactivation. Bronchoalveolar lavage (BAL) with diluted surfactant facilitates the removal of meconium. CHF5633, one of the most promising synthetic surfactants, is effective in neonatal respiratory distress syndrome. Here we investigated its efficacy via BAL in an experimental MAS model. METHODS: Experimental MAS was induced at birth in near-term newborn rabbits by intratracheal instillation of reconstituted human meconium. First, undiluted CHF5633 was compared with a porcine-derived surfactant (Poractant alfa) via intratracheal bolus (200 mg/kg). Second, the efficacy of BAL with diluted CHF5633 (5 mg/mL, 20 ml/kg) alone, or followed by undiluted boluses (100 or 300 mg/kg), was investigated. RESULTS: Meconium instillation caused severe lung injury, reduced endogenous surfactant pool, and poor survival. CHF5633 had similar benefits in improving survival and alleviating lung injury as Poractant alfa. CHF5633 BAL plus higher boluses exerted better effects than BAL or bolus alone in lung injury alleviation by reversing phospholipid pools and mitigating proinflammatory cytokine mRNA expression, without fluid retention and function deterioration. CONCLUSIONS: CHF5633 improved survival and alleviated meconium-induced lung injury, the same as Poractant alfa. CHF5633 BAL plus boluses was the optimal modality, which warrants further clinical investigation. IMPACT: To explore the efficacy of a synthetic surfactant, CHF5633, in neonatal lung protection comparing with Poractant alfa in a near-term newborn rabbit model with meconium-induced lung injury. Similar effects on improving survival and alleviating lung injury were found between CHF5633 and Poractant alfa. Optimal therapeutic effects were identified from the diluted CHF5633 bronchoalveolar lavage followed by its undiluted bolus instillation compared to the lavage or bolus alone regimens. Animals with CHF5633 lavage plus bolus regimen exerted neither substantial lung fluid retention nor lung mechanics deterioration but a trend of higher pulmonary surfactant-associated phospholipid pools.


Assuntos
Lesão Pulmonar , Síndrome de Aspiração de Mecônio , Pneumonia , Surfactantes Pulmonares , Feminino , Humanos , Coelhos , Recém-Nascido , Animais , Suínos , Mecônio , Animais Recém-Nascidos , Lesão Pulmonar/tratamento farmacológico , Síndrome de Aspiração de Mecônio/tratamento farmacológico , Irrigação Terapêutica , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Fosfolipídeos/uso terapêutico , Tensoativos/uso terapêutico
3.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076992

RESUMO

We compared the performance and levofloxacin (Quinsair) lung deposition of three nebulisers commonly used in CF (I-Neb Advance, eFlow rapid, and LC Plus) with the approved nebuliser Zirela. The delivered dose, delivery rate, and aerosol particle size distribution (APSD) for each device were determined using the methods described in the Pharmacopeia. High-resolution computed tomography scans obtained from seven adult patients with mild CF were used to generate computer-aided, three-dimensional models of their airway tree to assess lung deposition using functional respiratory imaging (FRI). The eFlow rapid and the LC Plus showed poor delivery efficiencies due to their high residual volumes. The I-Neb, which only delivers aerosols during the inspiratory phase, achieved the highest aerosol delivery efficiency. However, the I-Neb showed the largest particle size and lowest delivery rate (2.9 mg/min), which were respectively associated with a high extrathoracic deposition and extremely long nebulisation times (>20 min). Zirela showed the best performance considering delivery efficiency (159.6 mg out of a nominal dose of 240 mg), delivery rate (43.5 mg/min), and lung deposition (20% of the nominal dose), requiring less than 5 min to deliver a full dose of levofloxacin. The present study supports the use of drug-specific nebulisers and discourages the off-label use of general-purpose devices with the present levofloxacin formulation since subtherapeutic lung doses and long nebulisation times may compromise treatment efficacy and adherence.


Assuntos
Fibrose Cística , Administração por Inalação , Adulto , Fibrose Cística/complicações , Humanos , Levofloxacino , Pulmão , Nebulizadores e Vaporizadores , Aerossóis e Gotículas Respiratórios
4.
Pharmaceutics ; 14(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35890402

RESUMO

Thiazolidinediones (TZDs) are potent PPARγ agonists that have been shown to attenuate alveolar simplification after prolonged hyperoxia in term rodent models of bronchopulmonary dysplasia. However, the pulmonary outcomes of postnatal TZDs have not been investigated in preterm animal models. Here, we first investigated the PPARγ selectivity, epithelial permeability, and lung tissue binding of three types of TZDs in vitro (rosiglitazone (RGZ), pioglitazone, and DRF-2546), followed by an in vivo study in preterm rabbits exposed to hyperoxia (95% oxygen) to investigate the pharmacokinetics and the pulmonary outcomes of daily RGZ administration. In addition, blood lipids and a comparative lung proteomics analysis were also performed on Day 7. All TZDs showed high epithelial permeability through Caco-2 monolayers and high plasma and lung tissue binding; however, RGZ showed the highest affinity for PPARγ. The pharmacokinetic profiling of RGZ (1 mg/kg) revealed an equivalent biodistribution after either intratracheal or intraperitoneal administration, with detectable levels in lungs and plasma after 24 h. However, daily RGZ doses of 1 mg/kg did not improve lung function in preterm rabbits exposed to hyperoxia, and daily 10 mg/kg doses were even associated with a significant lung function worsening, which could be partially explained by the upregulation of lung inflammation and lipid metabolism pathways revealed by the proteomic analysis. Notably, daily postnatal RGZ produced an aberrant modulation of serum lipids, particularly in rabbit pups treated with the 10 mg/kg dose. In conclusion, daily postnatal RGZ did not improve lung function and caused dyslipidemia in preterm rabbits exposed to hyperoxia.

5.
Pharmaceutics ; 13(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34959333

RESUMO

Pulmonary infections caused by Pseudomonas aeruginosa (PA) represent the leading cause of pulmonary morbidity in adults with cystic fibrosis (CF). In addition to tobramycin, colistin, and aztreonam, levofloxacin has been approved in Europe to treat PA infections. Nevertheless, no lung deposition data on inhaled levofloxacin are yet available. We conducted a Functional Respiratory Imaging (FRI) study to predict the lung deposition of levofloxacin in the lungs of patients with CF. Three-dimensional airway models were digitally reconstructed from twenty high-resolution computed tomography scans obtained from historical patients' records. Levofloxacin aerosols generated with the corresponding approved nebuliser were characterised according to pharmacopeia. The obtained data were used to inform a computational fluid dynamics simulation of levofloxacin lung deposition using breathing patterns averaged from actual CF patients' spirometry data. Levofloxacin deposition in the lung periphery was significantly reduced by breathing patterns with low inspiratory times and high inspiratory flow rates. The intrathoracic levofloxacin deposition percentages for moderate and mild CF lungs were, respectively, 37.0% ± 13.6 and 39.5% ± 12.9 of the nominal dose. A significant albeit modest correlation was found between the central-to-peripheral deposition (C/P) ratio of levofloxacin and FEV1. FRI analysis also detected structural differences between mild and moderate CF airways. FRI revealed a significant intrathoracic deposition of levofloxacin aerosols, which distributed preferentially to the lower lung lobes, with an influence of the deterioration of FEV1 on the C/P ratio. The three-dimensional rendering of CF airways also detected structural differences between the airways of patients with mild and moderate CF.

6.
Pharmaceutics ; 13(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204670

RESUMO

Direct lung administration of budesonide in combination with surfactant reduces the incidence of bronchopulmonary dysplasia. Although the therapy is currently undergoing clinical development, the lung distribution of budesonide throughout the premature neonatal lung has not yet been investigated. Here, we applied mass spectrometry imaging (MSI) to investigate the surfactant-assisted distal lung distribution of budesonide. Unlabeled budesonide was either delivered using saline as a vehicle (n = 5) or in combination with a standard dose of the porcine surfactant Poractant alfa (n = 5). These lambs were ventilated for one minute, and then the lungs were extracted for MSI analysis. Another group of lambs (n = 5) received the combination of budesonide and Poractant alfa, followed by two hours of mechanical ventilation. MSI enabled the label-free detection and visualization of both budesonide and the essential constituent of Poractant alfa, the porcine surfactant protein C (SP-C). 2D ion intensity images revealed a non-uniform distribution of budesonide with saline, which appeared clustered in clumps. In contrast, the combination therapy showed a more homogeneous distribution of budesonide throughout the sample, with more budesonide distributed towards the lung periphery. We found similar distribution patterns for the SP-C and budesonide in consecutive lung tissue sections, indicating that budesonide was transported across the lungs associated with the exogenous surfactant. After two hours of mechanical ventilation, the budesonide intensity signal in the 2D ion intensity maps dropped dramatically, suggesting a rapid lung clearance and highlighting the relevance of achieving a uniform surfactant-assisted lung distribution of budesonide early after delivery to maximize the anti-inflammatory and maturational effects throughout the lung.

7.
Drug Deliv Transl Res ; 11(4): 1752-1765, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34047967

RESUMO

The major pathogen found in the lungs of adult cystic fibrosis (CF) patients is Pseudomonas aeruginosa, which builds antibiotic-resistant biofilms. Pulmonary delivery of antibiotics by inhalation has already been proved advantageous in the clinic, but the development of novel anti-infective aerosol medicines is complex and could benefit from adequate in vitro test systems. This work describes the first in vitro model of human bronchial epithelial cells cultivated at the air-liquid interface (ALI) and infected with P. aeruginosa biofilm and its application to demonstrate the safety and efficacy of aerosolized anti-infective nanocarriers. Such a model may facilitate the translation of novel therapeutic modalities into the clinic, reducing animal experiments and the associated problems of species differences. A preformed biofilm of P. aeruginosa PAO1 was transferred to filter-grown monolayers of the human CF cell line (CFBE41o-) at ALI and additionally supplemented with human tracheobronchial mucus. This experimental protocol provides an appropriate time window to deposit aerosolized ciprofloxacin-loaded nanocarriers at the ALI. When applied 1 h post-infection, the nanocarriers eradicated all planktonic bacteria and reduced the biofilm fraction of the pathogen by log 6, while CFBE41o- viability and barrier properties were maintained. The here described complex in vitro model approach may open new avenues for preclinical safety and efficacy testing of aerosol medicines against P. aeruginosa lung infection.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Animais , Antibacterianos , Biofilmes , Ciprofloxacina , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos
8.
J Antimicrob Chemother ; 76(6): 1472-1479, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712824

RESUMO

BACKGROUND: Pulmonary infections associated with Pseudomonas aeruginosa can be life-threatening for patients suffering from chronic lung diseases such as cystic fibrosis. In this scenario, the formation of biofilms embedded in a mucus layer can limit the permeation and the activity of anti-infectives. OBJECTIVES: Native human pulmonary mucus can be isolated from endotracheal tubes, but this source is limited for large-scale testing. This study, therefore, aimed to evaluate a modified artificial sputum medium (ASMmod) with mucus-like viscoelastic properties as a surrogate for testing anti-infectives against P. aeruginosa biofilms. METHODS: Bacterial growth in conventional broth cultures was compared with that in ASMmod, and PAO1-GFP biofilms were imaged by confocal microscopy. Transport kinetics of three antibiotics, tobramycin, colistin, and ciprofloxacin, through native mucus and ASMmod were studied, and their activity against PAO1 biofilms grown in different media was assessed by determination of metabolic activity and cfu. RESULTS: PAO1(-GFP) cultured in human pulmonary mucus or ASMmod showed similarities in bacterial growth and biofilm morphology. A limited permeation of antibiotics through ASMmod was observed, indicating its strong barrier properties, which are comparable to those of native human mucus. Reduced susceptibility of PAO1 biofilms was observed in ASMmod compared with LB medium for tobramycin and colistin, but less for ciprofloxacin. CONCLUSIONS: These findings underline the importance of mucus as a biological barrier to antibiotics. ASMmod appears to be a valuable surrogate for studying mucus permeation of anti-infectives and their efficacy against PAO1 biofilms.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Humanos , Muco , Tobramicina/farmacologia
9.
Sci Rep ; 10(1): 16502, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020513

RESUMO

Lung infections caused by Pseudomonas aeruginosa pose a serious threat to patients suffering from, among others, cystic fibrosis, chronic obstructive pulmonary disease, or bronchiectasis, often leading to life-threatening complications. The establishment of a chronic infection is substantially related to communication between bacteria via quorum-sensing networks. In this study, we aimed to assess the role of quorum-sensing signaling molecules of the Pseudomonas quinolone signal (PQS) and to investigate the viscoelastic properties of lung tissue homogenates of PA-infected mice in a prolonged acute murine infection model. Therefore, a murine infection model was successfully established via intra-tracheal infection with alginate-supplemented Pseudomonas aeruginosa NH57388A. Rheological properties of lung homogenates were analyzed with multiple particle tracking (MPT) and quorum-sensing molecules were quantified with LC-MS/MS. Statistical analysis of bacterial load and quorum-sensing molecules showed a strong correlation between these biomarkers in infected lungs. This was accompanied by noticeable changes in the consistency of lung homogenates with increasing infection severity. Furthermore, viscoelastic properties of the lung homogenates strongly correlated with bacterial load and quorum sensing molecules. Considering the strong correlation between the viscoelasticity of lung homogenates and the aforementioned biomarkers, the viscoelastic properties of infected lungs might serve as reliable new biomarker for the evaluation of the severity of P. aeruginosa infections in murine models.


Assuntos
Pneumonia/microbiologia , Infecções por Pseudomonas/fisiopatologia , Animais , Carga Bacteriana/métodos , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Feminino , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/imunologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Percepção de Quorum/imunologia , Infecções Respiratórias/microbiologia , Reologia/métodos , Espectrometria de Massas em Tandem/métodos
10.
Respir Res ; 20(1): 175, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382955

RESUMO

BACKGROUND: The amount of surfactant deposited in the lungs and its overall pulmonary distribution determine the therapeutic outcome of surfactant replacement therapy. Most of the currently available methods to determine the intrapulmonary distribution of surfactant are time-consuming and require surfactant labelling. Our aim was to assess the potential of Mass Spectrometry Imaging (MSI) as a label-free technique to qualitatively and quantitatively evaluate the distribution of surfactant to the premature lamb. METHODS: Twelve preterm lambs (gestational age 126-127d, term ~150d) were allocated in two experimental groups. Seven lambs were treated with an intratracheal bolus of the synthetic surfactant CHF5633 (200 mg/kg) and 5 lambs were managed with mechanical ventilation for 120 min, as controls. The right lung lobes of all lambs were gradually frozen while inflated to 20 cmH2O pressure for lung cryo-sections for MSI analysis. The intensity signals of SP-C analog and SP-B analog, the two synthetic peptides contained in the CHF5633 surfactant, were used to locate, map and quantify the intrapulmonary exogenous surfactant. RESULTS: Surfactant treatment was associated with a significant improvement of the mean arterial oxygenation and lung compliance (p < 0.05). Nevertheless, the physiological response to surfactant treatment was not uniform across all animals. SP-C analog and SP-B analog were successfully imaged and quantified by means of MSI in the peripheral lungs of all surfactant-treated animals. The intensity of the signal was remarkably low in untreated lambs, corresponding to background noise. The signal intensity of SP-B analog in each surfactant-treated animal, which represents the surfactant distributed to the peripheral right lung, correlated well with the physiologic response as assessed by the area under the curves of the individual arterial partial oxygen pressure and dynamic lung compliance curves of the lambs. CONCLUSIONS: Applying MSI, we were able to detect, locate and quantify the amount of exogenous surfactant distributed to the lower right lung of surfactant-treated lambs. The distribution pattern of SP-B analog correlated well with the pulmonary physiological outcomes of the animals. MSI is a valuable label-free technique which is able to simultaneously evaluate qualitative and quantitative drug distribution in the lung.


Assuntos
Pulmão/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Proteína B Associada a Surfactante Pulmonar/análise , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/análise , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/metabolismo , Animais , Animais Recém-Nascidos , Pulmão/efeitos dos fármacos , Espectrometria de Massas/métodos , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/farmacologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia , Ovinos , Distribuição Tecidual
11.
J Biophotonics ; 12(6): e201800052, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30597770

RESUMO

Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air-blood barrier formation. Here, linear Raman and coherent anti-Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI-like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three-dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label-free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Microscopia , Alvéolos Pulmonares/citologia , Análise Espectral Raman , Vibração , Humanos
12.
J Antimicrob Chemother ; 73(10): 2762-2769, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982453

RESUMO

Objectives: In the context of cystic fibrosis, Pseudomonas aeruginosa biofilms often develop in the vicinity of airway mucus, which acts as a protective physical barrier to inhaled matter. However, mucus can also adsorb small drug molecules administered as aerosols, including antibiotics, thereby reducing their bioavailability. The efficacy of antibiotics is typically assessed by determining the MIC using in vitro assays. This widespread technique, however, does not consider either bacterial biofilm formation or the influence of mucus, both of which may act as diffusion barriers, potentially limiting antibiotic efficacy. Methods: We grew P. aeruginosa biofilms in the presence or absence of human tracheal mucus and tested their susceptibility to tobramycin and colistin. Results: A significant reduction of tobramycin efficacy was observed when P. aeruginosa biofilms were grown in the presence of mucus compared with those grown in the absence of mucus. Diffusion of tobramycin through mucus was reduced; however, this reduction was more pronounced in biofilm/mucus mixtures, suggesting that biofilms in the presence of mucus respond differently to antibiotic treatment. In contrast, the influence of mucus on colistin efficacy was almost negligible and no differences in mucus permeability were observed. Conclusions: These findings underline the important role of mucus in the efficacy of anti-infective drugs.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Colistina/farmacologia , Muco/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/crescimento & desenvolvimento , Traqueia/metabolismo
13.
Biomacromolecules ; 19(8): 3489-3501, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29989799

RESUMO

Amphiphilic polymer-based drug delivery systems hold potential in enhancing pharmacokinetics and therapeutic efficacy due to their ability to simultaneously codeliver different drugs in a controlled manner. We propose here a facile method for synthesizing a new amphiphilic polymer, farnesylated glycol chitosan (FGC), which self-assembles into nanoparticles upon being dispersed in aqueous media. The characteristics of FGC nanoparticles, in particular the size, could be tuned in a range from 200 to 500 nm by modulating the degree of farnesylation and the pH and polymer concentration during particle preparation. Carrier capacity, release kinetics, and surface modification of the established system were investigated using different model compounds. The colloids were biocompatible and stable at biologically relevant pH values. The interactions between the carriers and human mucus were examined by multiple particle tracking, which revealed that ∼80% of the particles remain immobilized within the mucus matrix. These results postulate FGC as a versatile drug delivery platform.


Assuntos
Quitosana/análogos & derivados , Nanopartículas/química , Mucosa Respiratória/efeitos dos fármacos , Linhagem Celular Tumoral , Glicóis/química , Humanos , Nanopartículas/efeitos adversos , Prenilação , Mucosa Respiratória/metabolismo
14.
Int J Pharm ; 533(2): 373-376, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28705614

RESUMO

The conducting airways of the human lungs are lined by mucus, which lubricates the lung epithelium and provides a first-line protection against airborne threats. As a novel approach for visualization of the human mucus microstructure, we applied confocal Raman microscopy as a label-free and chemically selective technique. We were successfully able to chemically resolve the pulmonary surfactant from the mucus matrix and show its spatial distribution, as well as to visualize the structural changes within the freeze-dried mucus mesh upon chemical mucolysis. Subsequently, we performed rheological measurements before and after mucolysis and correlated morphology and chemical structure of the mucus with its rheological characteristics. These results do not only enrich the knowledge about the mucus microstructure, but can also, significantly contribute to rational development of future lung therapeutics.


Assuntos
Acetilcisteína/química , Muco/química , Liofilização , Humanos , Microscopia Eletrônica de Varredura , Mucosa Respiratória , Reologia , Análise Espectral Raman
15.
Pediatr Res ; 82(6): 1056-1063, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28723887

RESUMO

BackgroundThe intratracheal (IT) administration of budesonide using surfactant as a vehicle has been shown to reduce the incidence of bronchopulmonary dysplasia (BPD) in preterm infants. The objective of this study was to characterize the in vitro characteristics and in vivo safety and efficacy of the extemporaneous combination of budesonide and poractant alfa.MethodsThe stability, minimum surface tension, and viscosity of the preparation were evaluated by means of high-performance liquid chromatography (HPLC), Wilhelmy balance, and Rheometer, respectively. The safety and efficacy of the IT administration of the mixture were tested in two respiratory distress syndrome (RDS) animal models: twenty-seventh day gestational age premature rabbits and surfactant-depleted adult rabbits.ResultsA pre-formulation trial identified a suitable procedure to ensure the homogeneity and stability of the formulation. Wilhelmy Balance tests clarified that budesonide supplementation has no detrimental effect on poractant alfa surface tension activity. The addition of budesonide to poractant alfa did not affect the physiological response to surfactant treatment in both RDS animal models, and was associated to a significant reduction of lung inflammation in surfactant-depleted rabbits.ConclusionOur in vitro and in vivo analysis suggests that the IT administration of a characterized extemporaneous combination of poractant alfa and budesonide is a safe and efficacious procedure in the context of RDS.


Assuntos
Produtos Biológicos/administração & dosagem , Broncodilatadores/administração & dosagem , Displasia Broncopulmonar/tratamento farmacológico , Budesonida/administração & dosagem , Fosfolipídeos/administração & dosagem , Surfactantes Pulmonares/administração & dosagem , Animais , Produtos Biológicos/efeitos adversos , Líquido da Lavagem Broncoalveolar , Broncodilatadores/efeitos adversos , Budesonida/efeitos adversos , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Feminino , Técnicas In Vitro , Fosfolipídeos/efeitos adversos , Gravidez , Coelhos , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Tensão Superficial , Traqueia , Viscosidade
16.
Pediatr Pulmonol ; 52(7): 929-938, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28221717

RESUMO

BACKGROUND: Though natural surfactants (SF) are clinically superior to protein-free synthetic preparations, CHF-5633, a synthetic SF containing SP-B and SP-C analog peptides is a potential alternative to natural SF for treating neonatal respiratory distress syndrome (RDS). Nevertheless, information is lacking regarding the safety of this new treatment for the neonatal brain. We sought to compare the cerebral and pulmonary effects of this new synthetic surfactant (CHF5633) with those of natural porcine surfactant (Cursosurf) in premature lambs with RDS. METHODS: Twenty-one preterm lambs were randomly assigned to receive CHF5633, Curosurf, or no treatment (control). Pulmonary (gas exchange, lung mechanics) and cerebral (carotid artery blood flow, cerebral oxygen metabolism) effects were measured every 30 min for 6 h. Pulmonary and cerebral histological analysis were also performed. RESULTS: After delivery, lambs developed severe RDS (FIO2 :1, pH < 7.15, PaCO2 > 70 mmHg, PaO2 < 40 mmHg, Cdyn < 0.1 mL/cmH2 O/kg). By 30 min after treatment, animals in both SF-treated groups had consistently better gas exchange and lung mechanics than controls. After CHF5633 administration, PaCO2 , carotid artery blood flow, and cerebral oxygen delivery tended to slowly decrease compared to other groups. By 2 h, SF-treated groups had similar values of all parameters studied, these remaining steady for the rest of the experiment. Lambs administered CHF5633 obtained better lung and brain injury scores than controls. CONCLUSION: Intratracheal administration of a bolus of CHF5633 improves pulmonary status in preterm lambs with severe RDS, obtaining better lung and brain injury scores than controls and favorable cerebral hemodynamics, comparable to those with gold standard Curosurf treatment.


Assuntos
Encéfalo/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilcolinas/uso terapêutico , Proteína B Associada a Surfactante Pulmonar/uso terapêutico , Proteína C Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/uso terapêutico , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Animais , Animais Recém-Nascidos , Produtos Biológicos/uso terapêutico , Gasometria , Encéfalo/patologia , Encéfalo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Feminino , Hemodinâmica , Pulmão/patologia , Pulmão/fisiologia , Masculino , Fosfolipídeos/uso terapêutico , Troca Gasosa Pulmonar/efeitos dos fármacos , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Ovinos , Suínos
17.
Pediatr Res ; 81(2): 369-375, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27973472

RESUMO

BACKGROUND: CHF5633 is a new generation synthetic surfactant containing both SP-B and SP-C analogues developed for the treatment of respiratory distress syndrome. Here, the optimal dose and its performance in comparison to the animal-derived surfactant poractant alfa were investigated. METHODS: In vitro surfactant activity was determined by means of the Wilhelmy balance and the capillary surfactometer. The dose-finding study was performed in preterm rabbits with severe surfactant deficiency. CHF5633 doses ranging from 50 to 300 mg/kg were used. Untreated animals and animals treated with 200 mg/kg of poractant alfa were included for comparison. RESULTS: In vitro, minimum surface tension (γmin) was decreased from values above 70 to 0 mN/m by both surfactants, and they formed rapidly a film at the air-liquid interface. In vivo studies showed a clear dose-dependent improvement of lung function for CHF5633. The pulmonary effect of CHF5633 200 mg/kg dose was comparable to the pulmonary response elicited by 200 mg/kg of poractant alfa in preterm rabbits. CONCLUSION: CHF5633 is as efficient as poractant alfa in our in vitro and in vivo settings. A clear dose-dependent improvement of lung function could be observed for CHF5633, with the dose of 200 mg/kg being the most efficient one.


Assuntos
Produtos Biológicos/uso terapêutico , Fragmentos de Peptídeos/uso terapêutico , Fosfatidilcolinas/uso terapêutico , Fosfolipídeos/uso terapêutico , Proteína B Associada a Surfactante Pulmonar/uso terapêutico , Proteína C Associada a Surfactante Pulmonar/uso terapêutico , Tensoativos/uso terapêutico , Animais , Animais Recém-Nascidos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Recém-Nascido Prematuro , Pulmão/efeitos dos fármacos , Gravidez , Prenhez , Proteína B Associada a Surfactante Pulmonar/sangue , Proteína C Associada a Surfactante Pulmonar/sangue , Surfactantes Pulmonares/uso terapêutico , Coelhos , Respiração Artificial , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Tensão Superficial , Suínos
18.
PLoS One ; 8(2): e56127, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418521

RESUMO

OBJECTIVES: Surfactant (SF) and partial liquid ventilation (PLV) improve gas exchange and lung mechanics in neonatal RDS. However, variations in the effects of SF and PLV with degree of lung immaturity have not been thoroughly explored. SETTING: Experimental Neonatal Respiratory Physiology Research Unit, Cruces University Hospital. DESIGN: Prospective, randomized study using sealed envelopes. SUBJECTS: 36 preterm lambs were exposed (at 125 or 133-days of gestational age) by laparotomy and intubated. Catheters were placed in the jugular vein and carotid artery. INTERVENTIONS: All the lambs were assigned to one of three subgroups given: 20 mL/Kg perfluorocarbon and managed with partial liquid ventilation (PLV), surfactant (Curosurf®, 200 mg/kg) or (3) no pulmonary treatment (Controls) for 3 h. MEASUREMENTS AND MAIN RESULTS: Cardiovascular parameters, blood gases and pulmonary mechanics were measured. In 125-day gestation lambs, SF treatment partially improved gas exchange and lung mechanics, while PLV produced significant rapid improvements in these parameters. In 133-day lambs, treatments with SF or PLV achieved similarly good responses. Neither surfactant nor PLV significantly affected the cardiovascular parameters. CONCLUSION: SF therapy response was more effective in the older gestational age group whereas the effectiveness of PLV therapy was not gestational age dependent.


Assuntos
Fluorocarbonos/farmacologia , Ventilação Líquida/métodos , Troca Gasosa Pulmonar/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Mecânica Respiratória/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Fluorocarbonos/administração & dosagem , Idade Gestacional , Hemodinâmica/efeitos dos fármacos , Masculino , Gravidez , Surfactantes Pulmonares/administração & dosagem , Distribuição Aleatória , Testes de Função Respiratória , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Ovinos , Resultado do Tratamento
19.
Pediatr Res ; 72(4): 393-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22797142

RESUMO

BACKGROUND: Aerosolized perfluorocarbon (PFC) has been proposed as an alternative method of PFC administration; however, the efficacy of aerosolized PFC in a preterm animal model has not yet been demonstrated. METHODS: Twelve preterm lambs were randomized to two groups: a perfluorodecalin (PFD) aerosol group (n = 6) receiving 10 ml/kg/h of PFD delivered by an intratracheal inhalation catheter followed by 4 h of mechanical ventilation (MV) or the control group, in which animals (n = 6) were managed for 6 h with MV. Gas exchange, pulmonary mechanics, cardiovascular parameters, and cerebral blood flow (CBF) were measured. RESULTS: Both groups developed hypoxia, hypercarbia, and acidosis at baseline. Aerosolized PFD improved oxygenation (P < 0.0001) and pulmonary mechanics (P < 0.0001) and changed carbon dioxide values to normal physiological levels, unlike the treatment given to the controls (P < 0.0003). The time course of mean arterial blood pressure and CBF were significantly affected by PFD aerosolization, especially during the first hour of life. CBF gradually decreased during the first hour in the PFD aerosol group and remained stable until the end of the follow-up, whereas CBF remained higher in the control group (P < 0.0028). CONCLUSION: Aerosolized PFD improves pulmonary function in preterm lambs and should be further investigated as an alternative mode of PFC administration.


Assuntos
Fluorocarbonos/administração & dosagem , Pulmão/efeitos dos fármacos , Troca Gasosa Pulmonar/efeitos dos fármacos , Respiração Artificial , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Mecânica Respiratória/efeitos dos fármacos , Medicamentos para o Sistema Respiratório/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Pressão Arterial/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Idade Gestacional , Frequência Cardíaca/efeitos dos fármacos , Pulmão/fisiopatologia , Síndrome do Desconforto Respiratório do Recém-Nascido/tratamento farmacológico , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Ovinos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA