Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Infect Dis ; 145: 107081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38701914

RESUMO

OBJECTIVES: To evaluate diagnostic yield and feasibility of integrating testing for TB and COVID-19 using molecular and radiological screening tools during community-based active case-finding (ACF). METHODS: Community-based participants with presumed TB and/or COVID-19 were recruited using a mobile clinic. Participants underwent simultaneous point-of-care (POC) testing for TB (sputum; Xpert Ultra) and COVID-19 (nasopharyngeal swabs; Xpert SARS-CoV-2). Sputum culture and SARS-CoV-2 RT-PCR served as reference standards. Participants underwent ultra-portable POC chest radiography with computer-aided detection (CAD). TB infectiousness was evaluated using smear microscopy, cough aerosol sampling studies (CASS), and chest radiographic cavity detection. Feasibility of POC testing was evaluated via user-appraisals. RESULTS: Six hundred and one participants were enrolled, with 144/601 (24.0%) reporting symptoms suggestive of TB and/or COVID-19. 16/144 (11.1%) participants tested positive for TB, while 10/144 (6.9%) tested positive for COVID-19 (2/144 [1.4%] had concurrent TB/COVID-19). Seven (7/16 [43.8%]) individuals with TB were probably infectious. Test-specific sensitivity and specificity (95% CI) were: Xpert Ultra 75.0% (42.8-94.5) and 96.9% (92.4-99.2); Xpert SARS-CoV-2 66.7% (22.3-95.7) and 97.1% (92.7-99.2). Area under the curve (AUC) for CAD4TB was 0.90 (0.82-0.97). User appraisals indicated POC Xpert to have 'good' user-friendliness. CONCLUSIONS: Integrating TB/COVID-19 screening during community-based ACF using POC molecular and radiological tools is feasible, has a high diagnostic yield, and can identity probably infectious persons.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Programas de Rastreamento/métodos , Testes Imediatos , Escarro/microbiologia , Escarro/virologia , Tuberculose/diagnóstico , Tuberculose/epidemiologia , Tuberculose/diagnóstico por imagem , África Austral/epidemiologia , Sensibilidade e Especificidade , Estudos de Viabilidade , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/diagnóstico por imagem , Tuberculose Pulmonar/epidemiologia
2.
IEEE Trans Med Imaging ; 43(8): 2839-2853, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38530714

RESUMO

Pulmonary nodules may be an early manifestation of lung cancer, the leading cause of cancer-related deaths among both men and women. Numerous studies have established that deep learning methods can yield high-performance levels in the detection of lung nodules in chest X-rays. However, the lack of gold-standard public datasets slows down the progression of the research and prevents benchmarking of methods for this task. To address this, we organized a public research challenge, NODE21, aimed at the detection and generation of lung nodules in chest X-rays. While the detection track assesses state-of-the-art nodule detection systems, the generation track determines the utility of nodule generation algorithms to augment training data and hence improve the performance of the detection systems. This paper summarizes the results of the NODE21 challenge and performs extensive additional experiments to examine the impact of the synthetically generated nodule training images on the detection algorithm performance.


Assuntos
Algoritmos , Neoplasias Pulmonares , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Radiografia Torácica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Aprendizado Profundo
3.
Med Phys ; 49(7): 4466-4477, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35388486

RESUMO

BACKGROUND: Total lung volume is an important quantitative biomarker and is used for the assessment of restrictive lung diseases. PURPOSE: In this study, we investigate the performance of several deep-learning approaches for automated measurement of total lung volume from chest radiographs. METHODS: About 7621 posteroanterior and lateral view chest radiographs (CXR) were collected from patients with chest CT available. Similarly, 928 CXR studies were chosen from patients with pulmonary function test (PFT) results. The reference total lung volume was calculated from lung segmentation on CT or PFT data, respectively. This dataset was used to train deep-learning architectures to predict total lung volume from chest radiographs. The experiments were constructed in a stepwise fashion with increasing complexity to demonstrate the effect of training with CT-derived labels only and the sources of error. The optimal models were tested on 291 CXR studies with reference lung volume obtained from PFT. Mean absolute error (MAE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (Pearson's r) were computed. RESULTS: The optimal deep-learning regression model showed an MAE of 408 ml and an MAPE of 8.1% using both frontal and lateral chest radiographs as input. The predictions were highly correlated with the reference standard (Pearson's r = 0.92). CT-derived labels were useful for pretraining but the optimal performance was obtained by fine-tuning the network with PFT-derived labels. CONCLUSION: We demonstrate, for the first time, that state-of-the-art deep-learning solutions can accurately measure total lung volume from plain chest radiographs. The proposed model is made publicly available and can be used to obtain total lung volume from routinely acquired chest radiographs at no additional cost. This deep-learning system can be a useful tool to identify trends over time in patients referred regularly for chest X-ray.


Assuntos
Aprendizado Profundo , Radiografia Torácica , Humanos , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Radiografia Torácica/métodos , Estudos Retrospectivos , Tórax
4.
Eur Radiol ; 26(7): 2139-47, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26443601

RESUMO

OBJECTIVES: To benchmark the performance of state-of-the-art computer-aided detection (CAD) of pulmonary nodules using the largest publicly available annotated CT database (LIDC/IDRI), and to show that CAD finds lesions not identified by the LIDC's four-fold double reading process. METHODS: The LIDC/IDRI database contains 888 thoracic CT scans with a section thickness of 2.5 mm or lower. We report performance of two commercial and one academic CAD system. The influence of presence of contrast, section thickness, and reconstruction kernel on CAD performance was assessed. Four radiologists independently analyzed the false positive CAD marks of the best CAD system. RESULTS: The updated commercial CAD system showed the best performance with a sensitivity of 82 % at an average of 3.1 false positive detections per scan. Forty-five false positive CAD marks were scored as nodules by all four radiologists in our study. CONCLUSIONS: On the largest publicly available reference database for lung nodule detection in chest CT, the updated commercial CAD system locates the vast majority of pulmonary nodules at a low false positive rate. Potential for CAD is substantiated by the fact that it identifies pulmonary nodules that were not marked during the extensive four-fold LIDC annotation process. KEY POINTS: • CAD systems should be validated on public, heterogeneous databases. • The LIDC/IDRI database is an excellent database for benchmarking nodule CAD. • CAD can identify the majority of pulmonary nodules at a low false positive rate. • CAD can identify nodules missed by an extensive two-stage annotation process.


Assuntos
Bases de Dados Factuais , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Diagnóstico por Computador/métodos , Humanos , Pulmão/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Med Image Anal ; 14(6): 707-22, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20573538

RESUMO

Numerous publications and commercial systems are available that deal with automatic detection of pulmonary nodules in thoracic computed tomography scans, but a comparative study where many systems are applied to the same data set has not yet been performed. This paper introduces ANODE09 ( http://anode09.isi.uu.nl), a database of 55 scans from a lung cancer screening program and a web-based framework for objective evaluation of nodule detection algorithms. Any team can upload results to facilitate benchmarking. The performance of six algorithms for which results are available are compared; five from academic groups and one commercially available system. A method to combine the output of multiple systems is proposed. Results show a substantial performance difference between algorithms, and demonstrate that combining the output of algorithms leads to marked performance improvements.


Assuntos
Algoritmos , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Validação de Programas de Computador , Software , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Radiology ; 255(1): 199-206, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20123896

RESUMO

PURPOSE: To compare manual measurements of diameter, volume, and mass of pulmonary ground-glass nodules (GGNs) to establish which method is best for identifying malignant GGNs by determining change across time. MATERIALS AND METHODS: In this ethics committee-approved retrospective study, baseline and follow-up CT examinations of 52 GGNs detected in a lung cancer screening trial were included, resulting in 127 GGN data sets for evaluation. Two observers measured GGN diameter with electronic calipers, manually outlined GGNs to obtain volume and mass, and scored whether a solid component was present. Observer 1 repeated all measurements after 2 months. Coefficients of variation and limits of agreement were calculated by using Bland-Altman methods. In a subgroup of GGNs containing all resected malignant lesions, the ratio between intraobserver variability and growth (growth-to-variability ratio) was calculated for each measurement technique. In this subgroup, the mean time for growth to exceed the upper limit of agreement of each measurement technique was determined. RESULTS: The kappa values for intra- and interobserver agreement for identifying a solid component were 0.55 and 0.38, respectively. Intra- and interobserver coefficients of variation were smallest for GGN mass (P < .001). Thirteen malignant GGNs were resected. Mean growth-to-variability ratios were 11, 28, and 35 for diameter, volume, and mass, respectively (P = .03); mean times required for growth to exceed the upper limit of agreement were 715, 673, and 425 days, respectively (P = .02). CONCLUSION: Mass measurements can enable detection of growth of GGNs earlier and are subject to less variability than are volume or diameter measurements.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Carga Tumoral , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos , Nódulo Pulmonar Solitário/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA