Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Am Chem Soc ; 145(24): 13027-13037, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279388

RESUMO

Mucin expression and glycosylation patterns on cancer cells differ markedly from healthy cells. Mucin 1 (MUC1) is overexpressed in several solid tumors and presents high levels of aberrant, truncated O-glycans (e.g., Tn antigen). Dendritic cells (DCs) express lectins that bind to these tumor-associated carbohydrate antigens (TACAs) to modulate immune responses. Selectively targeting these receptors with synthetic TACAs is a promising strategy to develop anticancer vaccines and to overcome TACA tolerance. In this work, we prepared, via a solid phase peptide synthesis approach, a modular tripartite vaccine candidate, incorporating a high-affinity glycocluster based on a tetraphenylethylene scaffold, to target the macrophage galactose-type lectin (MGL) on antigen presenting cells. MGL is a C-type lectin receptor that binds Tn antigens and can route them to human leukocyte antigen class II or I, making it an attractive target for anticancer vaccines. Conjugation of the glycocluster to a library of MUC1 glycopeptides bearing the Tn antigen is shown to promote uptake and recognition of the TACA by DCs via MGL. In vivo testing revealed that immunization with the newly designed vaccine construct bearing the GalNAc glycocluster induced a higher titer of anti-Tn-MUC1 antibodies compared to the TACAs alone. Additionally, the antibodies obtained bind a library of tumor-associated saccharide structures on MUC1 and MUC1-positive breast cancer cells. Conjugation of a high-affinity ligand for MGL to tumor-associated MUC1 glycopeptide antigens has a synergistic impact on antibody production.


Assuntos
Mucina-1 , Vacinas , Humanos , Mucina-1/química , Galactose/metabolismo , Glicopeptídeos/química , Antígenos Glicosídicos Associados a Tumores/química , Lectinas Tipo C/metabolismo , Células Dendríticas , Macrófagos/metabolismo
3.
Inflammopharmacology ; 29(4): 1201-1210, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34241784

RESUMO

Marine sponges and their associated microbiota are multicellular animals known to produce metabolites with interesting pharmacological properties playing a pivotal role against a plethora of pathologic disorders such as inflammation, cancer and infections. Characellide A and B belong to a novel class of glycolipopeptides isolated from the deep sea marine sponge Characella pachastrelloides. In this study, we have evaluated the effects of characellide A and B on cytokine and chemokine release from human peripheral blood mononuclear cells (PBMC). Characellide A induces a concentration- and time-dependent CXCL8, IL-6 and TNF-α release from PBMC. This production is mediated by the induction of gene transcription. Moreover, cytokine/chemokine release induced by characellide A from PBMC is CD1d-dependent because a CD1d antagonist, 1,2-bis(diphenylphosphino)ethane [DPPE]-polyethylene glycolmonomethylether [PEG], specifically inhibits characellide A-induced activation of PBMC. In conclusion, characellide A is a novel modulator of adaptative/innate immune responses. Further studies are needed to understand its potential pharmacological application.


Assuntos
Fatores Biológicos/farmacologia , Agentes de Imunomodulação/farmacologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Poríferos , Animais , Fatores Biológicos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Agentes de Imunomodulação/isolamento & purificação , Imunomodulação/efeitos dos fármacos , Imunomodulação/fisiologia , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/imunologia , Leucócitos Mononucleares/imunologia
4.
Histochem Cell Biol ; 156(3): 253-272, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34152508

RESUMO

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.


Assuntos
Galectinas/metabolismo , Engenharia de Proteínas , Linhagem Celular Tumoral , Galectinas/análise , Galectinas/isolamento & purificação , Humanos , Espectrometria de Massas
5.
Biochemistry ; 60(17): 1327-1336, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724805

RESUMO

The human macrophage galactose lectin (MGL) is an endocytic type II transmembrane receptor expressed on immature monocyte-derived dendritic cells and activated macrophages and plays a role in modulating the immune system in response to infections and cancer. MGL contains an extracellular calcium-dependent (C-type) carbohydrate recognition domain (CRD) that specifically binds terminal N-acetylgalactosamine glycan residues such as the Tn and sialyl-Tn antigens found on tumor cells, as well as other N- and O-glycans displayed on certain viruses and parasites. Even though the glycan specificity of MGL is known and several binding glycoproteins have been identified, the molecular basis for substrate recognition has remained elusive due to the lack of high-resolution structures. Here we present crystal structures of the MGL CRD at near endosomal pH and in several complexes, which reveal details of the interactions with the natural ligand, GalNAc, the cancer-associated Tn-Ser antigen, and a synthetic GalNAc mimetic ligand. Like the asialoglycoprotein receptor, additional calcium atoms are present and contribute to stabilization of the MGL CRD fold. The structure provides the molecular basis for preferential binding of N-acetylgalactosamine over galactose and prompted the re-evaluation of the binding modes previously proposed in solution. Saturation transfer difference nuclear magnetic resonance data acquired using the MGL CRD and interpreted using the crystal structure indicate a single binding mode for GalNAc in solution. Models of MGL1 and MGL2, the mouse homologues of MGL, explain how these proteins might recognize LewisX and GalNAc, respectively.


Assuntos
Acetilgalactosamina/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Animais , Cristalografia por Raios X , Humanos , Ligantes , Camundongos , Ligação Proteica , Domínios Proteicos
6.
Eur J Med Chem ; 210: 113038, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333396

RESUMO

The myeloid leukemia cell differentiation protein (Mcl-1) is an anti-apoptotic protein of the B-cell lymphoma 2 (Bcl-2) family, which regulates cellular apoptosis. Mcl-1 expression plays a key role in survival of cancer cells and therefore serves as a promising target in cancer therapy. Besides, its importance as a cancer target, various peptides and small-molecule inhibitors have been successfully designed and synthesized, yet no Mcl-1 inhibitor is approved for clinical use. However, recent development on the understanding of Mcl-1's role in key cellular processes in cancer and an upsurge of reports highlighting its association in various anticancer drug resistance supports the view that Mcl-1 is a key target in various cancers, especially hematological cancers. This review compiles structures of a variety of inhibitors of Mcl-1 reported to date. These include inhibitors based on a diverse range of heterocycles (e.g. indole, imidazole, thiophene, nicotinic acid, piperazine, triazine, thiazole, isoindoline), oligomers (terphenyl, quaterpyridine), polyphenol, phenalene, anthranilic acid, anthraquinone, macrocycles, natural products, and metal-based complexes. In addition, an effort has been made to summarize the structure activity relationships, based on a variety of assays, of some important classes of Mcl-1 inhibitors, giving affinities and selectivities for Mcl-1 compared to other Bcl-2 family members. A focus has been placed on categorizing the inhibitors based on their core frameworks (scaffolds) to appeal to the chemical biologist or medicinal chemist.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Compostos Heterocíclicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia
7.
Bioorg Chem ; 84: 418-433, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30554081

RESUMO

1,5-Dideoxy-1,5-imino-l-fucitol (1-deoxyfuconojirimycin, DFJ) is an iminosugar that inhibits fucosidases. Herein, N-alkyl DFJs have been synthesised and tested against the α-fucosidases of T. maritima (bacterial origin) and B. taurus (bovine origin). The N-alkyl derivatives were inactive against the bacterial fucosidase, while inhibiting the bovine enzyme. Docking of inhibitors to homology models, generated for the bovine and human fucosidases, was carried out. N-Decyl-DFJ was toxic to cancer cell lines and was more potent than the other N-alkyl DFJs studied.


Assuntos
Inibidores Enzimáticos/síntese química , Álcoois Açúcares/química , alfa-L-Fucosidase/antagonistas & inibidores , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Concentração Inibidora 50 , Melfalan/síntese química , Melfalan/metabolismo , Melfalan/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Álcoois Açúcares/metabolismo , alfa-L-Fucosidase/metabolismo
8.
Histochem Cell Biol ; 145(2): 185-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26553286

RESUMO

Recognition of glycans by lectins leads to cell adhesion and growth regulation. The specificity and selectivity of this process are determined by carbohydrate structure (sequence and shape) and topology of its presentation. The synthesis of (neo)glycoconjugates with bi- to oligo-valency (glycoclusters) affords tools to delineate structure-activity relationships by blocking lectin binding to an artificial matrix, often a glycoprotein, or cultured cell lines. The drawback of these assays is that glycan presentation is different from that in tissues. In order to approach the natural context, we here introduce lectin histochemistry on fixed tissue sections to determine the susceptibility of binding of two plant lectins, i.e., GSA-II and WGA, to a series of 10 glycoclusters. Besides valency, this panel covers changes in the anomeric position (α/ß) and the atom at the glycosidic linkage (O/S). Flanked by cell and solid-phase assays with human tumor lines and two mucins, respectively, staining (intensity and profile) was analyzed in sections of murine jejunum, stomach and epididymis as a function of glycocluster presence. The marked and differential sensitivity of signal generation to structural aspects of the glycoclusters proves the applicability of this method. This enables comparisons between data sets obtained by using (neo)glycoconjugates, cells and the tissue context as platforms. The special advantage of processing tissue sections is the monitoring of interference with lectin association at sites that are relevant for functionality. Testing glycoclusters in lectin histochemistry will especially be attractive in cases of multi-target recognition (glycans, proteins and lipids) by a tissue lectin.


Assuntos
Glicoconjugados/química , Glicoconjugados/farmacologia , Lectinas de Plantas/análise , Lectinas de Plantas/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Células CHO , Células CACO-2 , Cricetulus , Relação Dose-Resposta a Droga , Glicoconjugados/síntese química , Histocitoquímica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Chemistry ; 21(50): 18109-21, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26531227

RESUMO

Migrastatin and isomigrastatin analogues have been synthesised in order to contribute to structure-activity studies on tumour cell migration inhibitors. These include macrocycles varying in ring size, functionality and alkene stereochemistry, as well as glucuronides. The synthesis work included application of the Saegusa-Ito reaction for regio- and stereoselective unsaturated macroketone formation, diastereoselective Brown allylation to generate 9-methylmigrastatin analogues and chelation-induced anomerisation to vary glucuronide configuration. Compounds were tested in vitro against both breast and pancreatic cancer cell lines and inhibition of tumour cell migration was observed in both wound-healing (scratch) and Boyden chamber assays. One unsaturated macroketone showed low affinity for a range of secondary drug targets, indicating it is at low risk of displaying adverse side effects.


Assuntos
Alcenos/química , Movimento Celular/efeitos dos fármacos , Glucuronídeos/química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Macrolídeos/química , Macrolídeos/farmacologia , Neoplasias Pancreáticas/química , Piperidonas/química , Piperidonas/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Relação Estrutura-Atividade
10.
Chemistry ; 21(50): 17993, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26537992

RESUMO

Invited for the cover of this issue are Paul V. Murphy and co-workers at the National University of Ireland Galway (NUI Galway) and Warsaw University. The image depicts MGSTA-6 giving a stop signal to tumour cells that are on the move. Read the full text of the article at 10.1002/chem.201502861.


Assuntos
Movimento Celular/efeitos dos fármacos , Compostos Macrocíclicos/química , Macrolídeos/síntese química , Macrolídeos/farmacologia , Piperidonas/síntese química , Piperidonas/farmacologia , Linhagem Celular Tumoral , Humanos , Macrolídeos/química , Estrutura Molecular , Piperidonas/química , Relação Estrutura-Atividade
11.
Molecules ; 20(2): 1788-823, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621423

RESUMO

The view on the significance of the presence of glycans in glycoconjugates is undergoing a paradigmatic change. Initially mostly considered to be rather inert and passive, the concept of the sugar code identifies glycans as highly versatile platform to store information. Their chemical properties endow carbohydrates to form oligomers with unsurpassed structural variability. Owing to their capacity to engage in hydrogen (and coordination) bonding and C-H/π-interactions these "code words" can be "read" (in Latin, legere) by specific receptors. A distinct class of carbohydrate-binding proteins are the lectins. More than a dozen protein folds have developed carbohydrate-binding capacity in vertebrates. Taking galectins as an example, distinct expression patterns are traced. The availability of labeled endogenous lectins facilitates monitoring of tissue reactivity, extending the scope of lectin histochemistry beyond that which traditionally involved plant lectins. Presentation of glycan and its cognate lectin can be orchestrated, making a glycan-based effector pathway in growth control of tumor and activated T cells possible. In order to unravel the structural basis of lectin specificity for particular glycoconjugates mimetics of branched glycans and programmable models of cell surfaces are being developed by strategic combination of lectin research with synthetic and supramolecular chemistry.


Assuntos
Lectinas/fisiologia , Polissacarídeos/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência de Carboidratos , Glicoproteínas/química , Glicoproteínas/fisiologia , Humanos , Lectinas/química , Dados de Sequência Molecular , Polissacarídeos/química , Ligação Proteica , Conformação Proteica
12.
Chembiochem ; 15(10): 1459-64, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24919421

RESUMO

An efficient and scalable synthesis of a key acyclic intermediate used for the preparation of migrastatin and its macroketone analogue is described; Brown alkoxyallylation is the key step for this synthesis. The macroketone was prepared on 100 mg scale by this route. Treatment of invasive pancreatic cancer cells grown on a cell-derived matrix or as subcutaneous tumours in nude mice with the macroketone inhibited E-cadherin dynamics in a manner consistent with increased cell adhesion and reduced invasive potential.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Caderinas/análise , Macrolídeos/síntese química , Macrolídeos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Piperidonas/síntese química , Piperidonas/uso terapêutico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/química , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Humanos , Macrolídeos/química , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Piperidonas/química , Células Tumorais Cultivadas
13.
PLoS One ; 8(10): e76789, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24116159

RESUMO

BACKGROUND: Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. RESULTS: OUR RESULTS SHOWED THAT TWO OF SIX FULLY SYNTHETIC ANALOGUES OF MIGRASTATIN: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. CONCLUSION: Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in vivo studies are required to verify this hypothesis.


Assuntos
Movimento Celular/efeitos dos fármacos , Macrolídeos/farmacologia , Piperidonas/farmacologia , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Citoesqueleto/metabolismo , Cães , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Humanos , Laminina , Macrolídeos/síntese química , Macrolídeos/química , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/prevenção & controle , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Modelos Químicos , Estrutura Molecular , Invasividade Neoplásica , Piperidonas/síntese química , Piperidonas/química , Proteoglicanas
14.
Chem Soc Rev ; 42(11): 4709-27, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23254759

RESUMO

Multivalency plays a major role in biological processes and particularly in the relationship between pathogenic microorganisms and their host that involves protein-glycan recognition. These interactions occur during the first steps of infection, for specific recognition between host and bacteria, but also at different stages of the immune response. The search for high-affinity ligands for studying such interactions involves the combination of carbohydrate head groups with different scaffolds and linkers generating multivalent glycocompounds with controlled spatial and topology parameters. By interfering with pathogen adhesion, such glycocompounds including glycopolymers, glycoclusters, glycodendrimers and glyconanoparticles have the potential to improve or replace antibiotic treatments that are now subverted by resistance. Multivalent glycoconjugates have also been used for stimulating the innate and adaptive immune systems, for example with carbohydrate-based vaccines. Bacteria present on their surfaces natural multivalent glycoconjugates such as lipopolysaccharides and S-layers that can also be exploited or targeted in anti-infectious strategies.


Assuntos
Glicoconjugados/química , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Aderência Bacteriana , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Galectinas/química , Galectinas/metabolismo , Glicoconjugados/imunologia , Glicoconjugados/farmacologia , HIV/fisiologia , Humanos , Imunidade Inata , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Nanopartículas/química , Internalização do Vírus/efeitos dos fármacos
15.
Molecules ; 17(9): 10065-71, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22922277

RESUMO

Burkholderia cepacia complex (Bcc) is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a real-time PCR method to quantify the levels of binding of B. multivorans to the lung epithelial cells, we have examined glycoconjugate derivatives for their potential to inhibit host cell attachment. Bivalent lactosides previously shown to inhibit galectin binding significantly reduced the attachment of B. multivorans to CF lung epithelial cells at micromolar concentrations. This was in contrast to monosaccharides and lactose, which were only effective in the millimolar range. Development of glycoconjugate therapies such as these, which inhibit attachment to lung epithelial cells, represent an alternative means of preventing infection with inherently antimicrobially resistant pathogens such as B. multivorans.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Burkholderia/efeitos dos fármacos , Glicosídeos/farmacologia , Mucosa Respiratória/microbiologia , Burkholderia/fisiologia , Infecções por Burkholderia/prevenção & controle , Linhagem Celular , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glicosídeos/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/microbiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
16.
Bioorg Med Chem Lett ; 21(4): 1167-70, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21273066

RESUMO

The synthesis of a small library of resorcylic acid lactones and evaluation of their biological properties as kinase inhibitors is described. Within the series E-enones were found more active than corresponding Z-enones as inhibitors of a subset of kinases containing a conserved cysteine. Replacement of the enone moiety with a ß-haloketone group led to compounds with an interesting kinase selectivity profile and also antiproliferative activity against Jurkat cells. An E-enone derivative also showed activity against capillary tube formation based on a co-culture of primary human umbilical cord endothelial cells (HUVECs) and vascular smooth muscle cells (vSMCs).


Assuntos
Antineoplásicos/química , Cetonas/química , Lactonas/química , Inibidores de Proteínas Quinases/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Células Cultivadas , Humanos , Isomerismo , Lactonas/síntese química , Lactonas/toxicidade , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 20(24): 7540-3, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21036045

RESUMO

Previously N-(8-(3-ethynylphenoxy)octyl-1-deoxynojirimycin 1 has been shown to display properties associated with inhibition of angiogenesis. Here we examined the anti-tumourigenic role of 1 in a lung cancer cell line. This agent altered cell surface oligosaccharide expression and inhibited the growth of A549 cells by inducing G1 phase cell cycle arrest and apoptosis. Furthermore, stress fibre assembly and cell migration in A549 cells was markedly suppressed by 1.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Fase G1 , Humanos , Neoplasias Pulmonares/metabolismo , Oligossacarídeos/metabolismo , Fibras de Estresse/metabolismo
18.
Chem Biol Drug Des ; 75(6): 570-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20565474

RESUMO

The alpha-glucosidase inhibitors N-methyl-1-deoxynojirimycin (MDNJ) and castanospermine have been shown to inhibit angiogenesis. A hybrid of 1-deoxynojirimycin (DNJ) and an aryl-1,2,3-triazole, which inhibits both an alpha-glucosidase and methionine aminopeptidase-2 (MetAP2), displayed properties associated with inhibition of angiogenesis (Bioorg. Med. Chem., 16, 2008, 6333-7). The biological evaluation of a structural analogue N-(8-(3-ethynylphenoxy)octyl-1-deoxynojirimycin is described herein. Although this alkyne derivative did not inhibit MetAP2, it inhibited a bacterial alpha-glucosidase, altered bovine aortic endothelial cell (BAEC) surface oligosaccharide expression and inhibited BAEC proliferation by inducing G1 phase cell cycle arrest. Experiments showed G1 arrest was attributable to the alpha-glucosidase inhibitor inducing an increase in p27(Kip1) expression and high phosphorylation of ERK1/2 without a reduction in cyclin D1. The DNJ derivative (0.1 mM) prevented capillary tube formation from bovine aortic endothelial cells, whereas DNJ or other analogues were unable to inhibit tube formation at the same concentration. Stress fiber assembly in bovine aortic endothelial cells was abolished, and BAEC migration was inhibited indicating the inhibition of tube formation by this derivative is partially a result of a reduction in cell motility. The agent also caused a reduction in secretion of MMP-2 from bovine aortic endothelial cells. Therefore, the new alpha-glucosidase inhibitor has a different mechanism by which it inhibits angiogenesis in vitro when compared with deoxynojirimycin, the deoxynojirimycin -triazole hybrid, N-methyl-1-deoxynojirimycin and castanospermine.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores da Angiogênese/farmacologia , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Inibidores da Angiogênese/química , Animais , Bovinos , Células Cultivadas , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fase G1 , Inibidores de Glicosídeo Hidrolases , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , alfa-Glucosidases/metabolismo
19.
J Org Chem ; 74(23): 9010-26, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19899775

RESUMO

Glycan recognition by lectins initiates clinically relevant processes such as toxin binding or tumor spread. Thus, the development of potent inhibitors has a medical perspective. Toward this goal, we report the synthesis of both rigid and flexible bivalent lactosides on scaffolds that include secondary and tertiary terephthalamides and N,N'-diglucosylterephthalamides. Construction of these compounds involved Schmidt-Michel glycosidation, and amide coupling or Ugi reactions of relevant glycosyl amines in key steps. A glycocluster based on a rigid glycophane was also prepared from coupling of a glucuronic acid derivative and p-xylylenediamine with subsequent ring-closing metathesis. Finally, a more flexible bivalent lactoside was produced from lactosyl azide with use of the copper-catalyzed azide-alkyne cycloaddition. Distances between lactose residues were analyzed computationally as were their orientations for the relatively rigid subset of compounds. Distinct spacing properties were revealed by varying the structure of the scaffold or by varying the location of the lactose residue on the scaffold. To relate these features to bioactivity a plant toxin and human adhesion/growth-regulatory galectins were used as sensors in three types of assay, i.e. measuring agglutination of erythrocytes, binding to glycans of a surface-immobilized glycoprotein, or binding to human cells. Methodologically, the common hemeagglutination assay was found to be considerably less sensitive than both solid-phase and cell assays. The bivalent compounds were less effective at interfering with glycoprotein binding to the plant toxin than to human lectins. Significantly, a constrained compound was identified that displayed selectivity in its inhibitory potency between galectin-3 and its proteolytically processed form. Conversely, compounds with a high degree of flexibility showed notable ability to protect human cells from plant toxin binding. The applied conjugation chemistry thus is compatible with the long-term aim to produce potent and selective lectin inhibitors.


Assuntos
Desenho de Fármacos , Glicosídeos/síntese química , Glicosídeos/farmacologia , Lectinas/antagonistas & inibidores , Testes de Aglutinação , Adesão Celular/efeitos dos fármacos , Eritrócitos/química , Galectinas , Glicoproteínas , Glicosídeos/química , Humanos , Proteínas Imobilizadas/química , Ftalimidas , Lectinas de Plantas/química
20.
Org Biomol Chem ; 7(22): 4715-25, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19865709

RESUMO

The conjugation of carbohydrates to synthetic scaffolds has the goal of preparing potent inhibitors of lectin binding. We herein report the synthesis of a panel of bivalent compounds (cyclophane and terephthalamide-derivatives) then used to establish the influence of scaffold flexibility on respective inhibitory potency in a medically relevant test system. Synthetic routes to two phenylenediamine-based glycocyclophanes involving Ugi reactions of glucuronic acid derivatives and subsequent ring closing metathesis are described, as are improvements for producing terephthalamide-based carbohydrate carriers. Assays were performed with human tumour cells measuring quantitatively the influence of the test compounds on fluorescent surface staining by labelled lectins. Biological evaluation using two different lines of cancer cells as well as cells with known alterations in the glycomic profile (cells treated with an inhibitor of glycan processing and a glycosylation mutant) reduced the risk of generating premature generalizations regarding inhibitor potency. Bioactivity relative to free mannose was invariably determined for the synthetic compounds. A clear trend for enhanced inhibitory properties for macrocyclic compounds compared to non-macrocyclic derivatives was discerned for one type of glycocyclophane. Herein we also document the impact of altering the spacing between the mannose residues, altering cell surface ligand density and cell-type reactivity. The applied strategy for the cell assays is proposed to be of general importance in the quest to identify medically relevant lectin inhibitors.


Assuntos
Éteres Cíclicos/química , Éteres Cíclicos/síntese química , Glicômica , Lectinas/metabolismo , Fenilenodiaminas/química , Animais , Bioensaio , Células CHO , Configuração de Carboidratos , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Fluorescência , Glicosilação , Humanos , Ligantes , Modelos Moleculares , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA