RESUMO
Purpose: Quantitative in vivo [18F]-(2S,4R)4-fluoroglutamine ([18F]4-FGln or more simply [18F]FGln) metabolic kinetic parameters are compared with activity levels of glutamine metabolism in different types of hepatocellular carcinoma (HCC). Methods: For this study, we used two transgenic mouse models of HCC induced by protooncogenes, MYC, and MET. Biochemical data have shown that tumors induced by MYC have increased levels of glutamine metabolism compared to those induced by MET. One-hour dynamic [18F]FGln PET data were acquired and reconstructed for fasted MYC mice (n = 11 tumors from 7 animals), fasted MET mice (n = 8 tumors from 6 animals), fasted FVBN controls (n = 8 normal liver regions from 6 animals), nonfasted MYC mice (n = 16 tumors from 6 animals), and nonfasted FVBN controls (n = 8 normal liver regions from 3 animals). The influx rate constants (K 1) using the one-tissue compartment model were derived for each tumor with the left ventricular blood pool input function. Results: Influx rate constants were significantly higher for MYC tumors (K 1 = 0.374 ± 0.133) than for MET tumors (K 1 = 0.141 ± 0.058) under fasting conditions (P = 0.0002). Rate constants were also significantly lower for MET tumors (K 1 = 0.141 ± 0.135) than normal livers (K 1 = 0.332 ± 0.179) under fasting conditions (P = 0.0123). Fasting conditions tested for MYC tumors and normal livers did not result in any significant difference with P values > 0.005. Conclusion: Higher influx rate constants corresponded to elevated levels of glutamine metabolism as determined by biochemical assays. The data showed that there is a distinctive difference in glutamine metabolism between MYC and MET tumors. Our study has demonstrated the potential of [18F]FGln PET imaging as a tool to assess glutamine metabolism in HCC tumors in vivo with a caution that it may not be able to clearly distinguish HCC tumors from normal liver tissue.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Modelos Animais de Doenças , Glutamina/análogos & derivados , Glutamina/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodosRESUMO
Gastric heterotopia (GH) is a rare, congenital condition where gastric tissue is found outside of its normal location in the gastric mucosa. It is usually benign and can be found throughout the gastrointestinal (GI) tract. In the duodenum, it is usually seen as multiple polyps, specifically in the duodenal bulb. Here, we discuss the case of a 67-year-old male patient who presented with hematemesis, melena, and abdominal pain. Esophagogastroduodenoscopy (EGD) and biopsy revealed a mass consisting of heterotopic gastric mucosa along with an esophageal ulcer. In this article, we will discuss the literature related to the clinical presentation, diagnosis, and management of GH.
RESUMO
Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased coenrichment of EGFR and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that coinheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with coenriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.
Assuntos
Divisão Celular Assimétrica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Antígeno AC133/metabolismo , Neoplasias Encefálicas/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Autorrenovação Celular , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismoRESUMO
BACKGROUND: The prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among asymptomatic patients admitted to hospital has implications for personal protective equipment use, testing strategy and confidence in the safety of acute care services. Our aim was to estimate the positivity rate of reverse transcription polymerase chain reaction (RT-PCR) testing among people admitted to hospital without symptoms of coronavirus disease 2019 (COVID-19) in Alberta, Canada. METHODS: Between Apr. 9 and May 24, 2020, we screened for COVID-19 symptoms and tested for SARS-CoV-2 infection in all consecutive adult patients (≥ 18 yr) admitted via emergency department to 3 Alberta hospitals. We summarized the parameters of the epidemic curve and assessed the performance of symptom screening versus RT-PCR results on nasopharyngeal or oropharyngeal swab samples. RESULTS: The study period encompassed Alberta's initial epidemic curve, with peak active cases per 100 000 of 71.4 (0.07%) on Apr. 30, 2020, and 14.7 and 14.6 at the beginning (Apr. 9, 2020) and end (May 24, 2020), respectively. Testing for SARS-CoV-2 infection (64.9% throat and 35.1% nasopharyngeal swabs) was done on 3375 adults (mean age 51, standard deviation 21, yr; 51.5% men). None of the asymptomatic patients (n = 1814) tested positive, and 71 of those with symptoms tested positive (n = 1561; 4.5%, 95% confidence interval [CI] 3.6%-5.7%). Sensitivity of symptom screening (v. RT-PCR) was 100% (95% CI 95%-100%), and specificity was 55% (95% CI 53%-57%). Posttest probabilities for prevalence of SARS-CoV-2 infection ranging from 1.5 to 14 times the peak prevalence of active cases during the study did not change when we assumed lower sensitivity (92%). INTERPRETATION: In a region with low disease prevalence where protocolized symptom assessment was in place during the admission process, we did not identify people admitted to hospital without COVID-19 symptoms who were RT-PCR positive. There may not be additive benefit to universal testing of asymptomatic patients on hospital admission in a setting of low pretest probability and strong public health containment.
Assuntos
Doenças Assintomáticas/epidemiologia , COVID-19/epidemiologia , Técnicas de Laboratório Clínico/normas , Serviço Hospitalar de Emergência/estatística & dados numéricos , Programas de Rastreamento/métodos , Melhoria de Qualidade , Alberta/epidemiologia , COVID-19/diagnóstico , Comorbidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2RESUMO
A metabolic phenomenon known as the Warburg effect has been characterized in certain cancerous cells, embryonic stem cells, and other rapidly proliferative cell types. Previously, our attempts to induce a Warburg-like state pharmaceutically via CPI-613 and PS48 treatment did augment metabolite production and gene expression; however, this treatment demonstrated a Reverse Warburg effect phenotype observed in cancer-associated stroma. In the current study, we inquired whether the mitochondria were affected by the aforementioned pharmaceutical treatment as observed in cancerous stromal fibroblasts. While the pharmaceutical agents decreased mitochondrial membrane potential in porcine fetal fibroblasts, the number and size of mitochondria were similar, as was the overall cell size. Moreover, the fibroblasts that were treated with CPI-613 and PS48 for a week had increased numbers of large autolysosome vesicles. This coincided with increased intensity of LysoTracker staining in treated cells as observed by flow cytometry. Treated fibroblasts thus may utilize changes in metabolism and autophagy to mitigate the damage of treatment with pharmaceutical agents. These findings shed light on how these pharmaceutical agents interact and how treated cells augment metabolism to sustain viability.
Assuntos
Caprilatos/farmacologia , Lisossomos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácidos Pentanoicos/farmacologia , Sulfetos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Lisossomos/metabolismo , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , SuínosRESUMO
Some performance standards for continuous trio breeding in 'shoebox' cages for inbred stocks and outbred strains of mice challenge the minimum floor space recommendations in the 8th edition of the Guide for the Care and Use of Laboratory Animals. In our study, we evaluated whether continuous trio breeding could be successfully applied to a breeding colony of genetically engineered mice housed in shoebox cages with a floor area of 67.6 in2. Mice heterozygous for genetically engineered mutations to estrogen receptors and their wildtype counterparts were continuously bred as trios or pairs. Confounding environmental factors were controlled through standardized husbandry practices and husbandry, and all mice were bred simultaneously to control for temporal factors. Several measures of reproductive performance-including number of litters per female, production index, interlitter interval, litter size at birth, litter size at weaning, weaning rate, and body weight of pups at weaning- were evaluated over approximately 6 mo. Regardless of genotype, interlitter interval, litter size at birth, and litter size at weaning were significantly lower for trio-bred mice than for pair-bred mice. In addition, significant interactions emerged between genotype and breeding strategy for these reproductive measures. Furthermore, significant differences between genotypes occurred for interlitter interval and weaning rate, regardless of breeding strategy. Underlying mechanisms to account for effects of genotype on interlitter interval and the interaction of genotype with breeding strategy were unclear but may reflect effects of overcrowding and reproductive suppression.
Assuntos
Criação de Animais Domésticos , Animais de Laboratório , Cruzamento , Abrigo para Animais , Receptores de Estrogênio/genética , Animais , Peso Corporal , Feminino , Genótipo , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos Knockout , Gravidez , Reprodução/efeitos dos fármacos , DesmameRESUMO
Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , RNA Mensageiro/genética , Zigoto/metabolismo , Animais , Animais Geneticamente Modificados/genética , Clonagem Molecular/métodos , Microinjeções , RNA Mensageiro/administração & dosagem , Suínos/genéticaRESUMO
The Warburg effect is a metabolic phenomenon characterized by increased glycolytic activity, decreased mitochondrial oxidative phosphorylation, and the production of lactate. This metabolic phenotype is characterized in rapidly proliferative cell types such as cancerous cells and embryonic stem cells. We hypothesized that a Warburg-like metabolism could be achieved in other cell types by treatment with pharmacological agents, which might, in turn, facilitate nuclear reprogramming. The aim of this study was to treat fibroblasts with CPI-613 and PS48 to induce a Warburg-like metabolic state. We demonstrate that treatment with both drugs altered the expression of 69 genes and changed the level of 21 metabolites in conditioned culture media, but did not induce higher proliferation compared to the control treatment. These results support a role for the reverse Warburg effect, whereby cancer cells induce cancer-associated fibroblast cells in the surrounding stroma to exhibit the metabolically characterized Warburg effect. Cancer-associated fibroblasts then produce and secrete metabolites such as pyruvate to supply the cancerous cells, thereby supporting tumor growth and metastasis. While anticipating an increase in the production of lactate and increased cellular proliferation, both hallmarks of the Warburg effect, we instead observed increased secretion of pyruvate without changes in proliferation.
Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Animais , Caprilatos/farmacologia , Proliferação de Células , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Meios de Cultivo Condicionados , Feto/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Glicólise/genética , Ácidos Pentanoicos/farmacologia , Sulfetos/farmacologia , SuínosRESUMO
A variety of nanoscale scaffolds, including virus-like particles (VLPs), are being developed for biomedical applications; however, little information is available about their in vivo behavior. Targeted nanoparticles are particularly valuable as diagnostic and therapeutic carriers because they can increase the signal-to-background ratio of imaging agents, improve the efficacy of drugs, and reduce adverse effects by concentrating the therapeutic molecule in the region of interest. The genome-free capsid of bacteriophage MS2 has several features that make it well-suited for use in delivery applications, such as facile production and modification, the ability to display multiple copies of targeting ligands, and the capacity to deliver large payloads. Anti-EGFR antibodies were conjugated to MS2 capsids to construct nanoparticles targeted toward receptors overexpressed on breast cancer cells. The MS2 agents showed good stability in physiological conditions up to 2 days and specific binding to the targeted receptors in in vitro experiments. Capsids radiolabeled with 64Cu isotopes were injected into mice possessing tumor xenografts, and both positron emission tomography-computed tomography (PET/CT) and scintillation counting of the organs ex vivo were used to determine the localization of the agents. The capsids exhibit surprisingly long circulation times (10-15% ID/g in blood at 24 h) and moderate tumor uptake (2-5% ID/g). However, the targeting antibodies did not lead to increased uptake in vivo despite in vitro enhancements, suggesting that extravasation is a limiting factor for delivery to tumors by these particles.
Assuntos
Anticorpos/química , Neoplasias da Mama/metabolismo , Proteínas do Capsídeo/química , Capsídeo/química , Levivirus/química , Nanopartículas/química , Animais , Feminino , Citometria de Fluxo , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Confocal , Tomografia por Emissão de Pósitrons combinada à Tomografia ComputadorizadaRESUMO
BACKGROUND: We previously demonstrated that tissue plasminogen activator (tPA) reduces infarct size after mechanical middle cerebral artery occlusion (MCAO) in wild-type (WT) mice and transgenic mice expressing human leukocyte antigen DR2 (DR2-Tg). Clinically, tPA limits ischemic damage by dissolving the clot blocking blood flow through a cerebral artery. To mimic the clinical situation, we developed a new mouse model of thromboembolic stroke, and tested the efficacy of tPA in WT and DR2-Tg mice. New Method Autologous blood is withdrawn into a PE-8 catheter filled with 2 IU α-thrombin. After exposing the catheter briefly to air, the catheter is reintroduced into the external (ECA) and advanced into the internal carotid artery (ICA) to allow for intravascular injection of thrombin at the MCA bifurcation. To validate the model, we tested the effect of tPA on laser-Doppler perfusion (LDP) over the MCA territory and infarct size in WT and DR2-Tg mice. RESULTS: The procedure results in a consistent drop in LDP, and leads to a highly reproducible ischemic lesion. When administered at 15min after thrombosis, tPA restored LDP and resulted in a significant reduction in infarct size at 24h after thrombosis in both WT and DR2-Tg. COMPARISON WITH EXISTING METHODS: Our model significantly reduces surgery time, requires a single anesthesia exposure, and produces a consistent and predictable infarction, with low variability and mortality. CONCLUSION: We validated the efficacy of tPA in restoring blood flow and reducing infarct in a new model of endovascular thromboembolic stroke in the mouse.
Assuntos
Modelos Animais de Doenças , Embolia Intracraniana , Trombose Intracraniana , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Fibrinolíticos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Embolia Intracraniana/tratamento farmacológico , Embolia Intracraniana/patologia , Trombose Intracraniana/tratamento farmacológico , Trombose Intracraniana/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Procedimentos Neurocirúrgicos/métodos , Distribuição Aleatória , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Ativador de Plasminogênio Tecidual/farmacologiaRESUMO
INTRODUCTION: In this study, a structurally modified phosphoramidate scaffold, with improved prostate-specific membrane antigen (PSMA) avidity, stability and in vivo characteristics, as a PET imaging agent for prostate cancer (PCa), was prepared and evaluated. METHODS: p-Fluorobenzoyl-aminohexanoate and 2-(3-hydroxypropyl)glycine were introduced into the PSMA-targeting scaffold yielding phosphoramidate 5. X-ray crystallography was performed on the PSMA/5 complex. [(18)F]5 was synthesized, and cell uptake and internalization studies were conducted in PSMA(+) LNCaP and CWR22Rv1 cells and PSMA(-) PC-3 cells. In vivo PET imaging and biodistribution studies were performed at 1 and 4 h post injection in mice bearing CWR22Rv1 tumor, with or without blocking agent. RESULTS: The crystallographic data showed interaction of the p-fluorobenzoyl group with an arene-binding cleft on the PSMA surface. In vitro studies revealed elevated uptake of [(18)F]5 in PSMA(+) cells (2.2% in CWR22Rv1 and 12.1% in LNCaP) compared to PSMA(-) cells (0.08%) at 4 h. In vivo tumor uptake of 2.33% ID/g and tumor-to-blood ratio of 265:1 was observed at 4 h. CONCLUSIONS: We have successfully synthesized, radiolabeled and evaluated a new PSMA-targeted PET agent. The crystal structure of the PSMA/5 complex highlighted the interactions within the arene-binding cleft contributing to the overall complex stability. The high target uptake and rapid non-target clearance exhibited by [(18)F]5 in PSMA(+) xenografts substantiates its potential use for PET imaging of PCa. ADVANCES IN KNOWLEDGE: The only FDA-approved imaging agent for PCa, Prostascint®, targets PSMA but suffers from inherent shortcomings. The data acquired in this manuscript confirmed that our new generation of [(18)F]-labeled PSMA inhibitor exhibited promising in vivo performance as a PET imaging agent for PCa and is well-positioned for subsequent clinical trials. Implications for Patient Care Our preliminary data demonstrate that this tracer possesses the required imaging characteristics to be sensitive and specific for PCa imaging in patients at all stages of the disease.
Assuntos
Amidas/química , Radioisótopos de Flúor , Glutamato Carboxipeptidase II/antagonistas & inibidores , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Ácidos Fosfóricos/química , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Animais , Antígenos de Superfície/química , Transporte Biológico , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Glutamato Carboxipeptidase II/química , Humanos , Concentração Inibidora 50 , Marcação por Isótopo , Masculino , Camundongos , Modelos Moleculares , Peptidomiméticos/metabolismo , Peptidomiméticos/farmacocinética , Neoplasias da Próstata/patologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacocinética , Inibidores de Proteases/farmacologia , Conformação Proteica , Distribuição TecidualRESUMO
Patients with Alzheimer's disease (AD) display amyloidopathy and tauopathy. In mouse models of AD, pharmacological inhibition using small molecule enzyme inhibitors or genetic inactivation of acyl-coenzyme A (Acyl-CoA):cholesterol acyltransferase 1 (ACAT1) diminished amyloidopathy and restored cognitive deficits. In microglia, ACAT1 blockage increases autophagosome formation and stimulates amyloid ß peptide1-42 degradation. Here, we hypothesize that in neurons ACAT1 blockage augments autophagy and increases autophagy-mediated degradation of P301L-tau protein. We tested this possibility in murine neuroblastoma cells ectopically expressing human tau and in primary neurons isolated from triple transgenic AD mice that express mutant forms of amyloid precursor protein, presenilin-1, and human tau. The results show that ACAT1 blockage increases autophagosome formation and decreases P301L-tau protein content without affecting endogenous mouse tau protein content. In vivo, lacking Acat1 decreases P301L-tau protein content in the brains of young triple transgenic AD mice but not in those of old mice, where extensive hyperphosphorylations and aggregation of P301L-tau take place. These results suggest that, in addition to ameliorating amyloidopathy in both young and old AD mice, ACAT1 blockage may benefit AD by reducing tauopathy at early stage.
Assuntos
Acetatos/farmacologia , Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Acetil-CoA C-Acetiltransferase/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Benzimidazóis/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Neurônios/metabolismo , Neurônios/fisiologia , Ácidos Sulfônicos/farmacologia , Proteínas tau/metabolismo , Acetamidas , Acetatos/uso terapêutico , Acetil-CoA C-Acetiltransferase/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Benzimidazóis/uso terapêutico , Células Cultivadas , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Fragmentos de Peptídeos/metabolismo , Presenilina-1/metabolismo , Sulfonamidas , Ácidos Sulfônicos/uso terapêuticoRESUMO
The increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen-binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU). In the full-length immunoglobulin form, U33 IgG labeled with near-infrared fluorophores or radionuclides allowed us to noninvasively detect active uPA in prostate cancer xenograft models using optical and single-photon emission computed tomography imaging modalities. U33 IgG labeled with (111)In had a remarkable tumor uptake of 43.2% injected dose per gram (%ID/g) 72 hours after tail vein injection of the radiolabeled probe in subcutaneous xenografts. In addition, U33 was able to image active uPA in small soft-tissue and osseous metastatic lesions using a cardiac dissemination prostate cancer model that recapitulated metastatic human cancer. The favorable imaging properties were the direct result of U33 IgG internalization through an uPA receptor-mediated mechanism in which U33 mimicked the function of the endogenous inhibitor of uPA to gain entry into the cancer cell. Overall, our imaging probe targets a prostate cancer-associated protease, through a unique mechanism, allowing for the noninvasive preclinical imaging of prostate cancer lesions.
Assuntos
Neoplasias da Próstata/enzimologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Linhagem Celular Tumoral , Imunofluorescência , Expressão Gênica , Humanos , Radioisótopos de Índio , Masculino , Camundongos Nus , Transplante de Neoplasias , Especificidade de Órgãos , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Óptica , Ativador de Plasminogênio Tipo Uroquinase/genéticaRESUMO
INTRODUCTION: Acute kidney injury is a serious,sexually dimorphic perioperative complication, primarily attributed to hypoperfusion. We previously found that estradiol is renoprotective after cardiac arrest and cardiopulmonary resuscitation in ovariectomized female mice. Additionally, we found that neither estrogen receptor alpha nor beta mediated this effect. We hypothesized that the G protein estrogen receptor (GPR30) mediates the renoprotective effect of estrogen. METHODS: Ovariectomized female and gonadally intact male wild-type and GPR30 gene-deleted mice were treated with either vehicle or 17ß-estradiol for 7 days, then subjected to cardiac arrest and cardiopulmonary resuscitation. Twenty four hours later, serum creatinine and urea nitrogen were measured, and histologic renal injury was evaluated by unbiased stereology. RESULTS: In both males and females, GPR30 gene deletion was associated with reduced serum creatinine regardless of treatment. Estrogen treatment of GPR30 gene-deleted males and females was associated with increased preprocedural weight. In ovariectomized female mice, estrogen treatment did not alter resuscitation, but was renoprotective regardless of GPR30 gene deletion. In males, estrogen reduced the time-to-resuscitate and epinephrine required. In wild-type male mice, serum creatinine was reduced, but neither serum urea nitrogen nor histologic outcomes were affected by estrogen treatment. In GPR30 gene-deleted males, estrogen did not alter renal outcomes. Similarly, renal injury was not affected by G1 therapy of ovariectomized female wild-type mice. CONCLUSION: Treatment with 17ß-estradiol is renoprotective after whole-body ischemia-reperfusion in ovariectomized female mice irrespective of GPR30 gene deletion. Treatment with the GPR30 agonist G1 did not alter renal outcome in females. We conclude GPR30 does not mediate the renoprotective effect of estrogen in ovariectomized female mice. In males, estrogen therapy was not renoprotective. Estrogen treatment of GPR30 gene-deleted mice was associated with increased preprocedural weight in both sexes. Of significance to further investigation, GPR30 gene deletion was associated with reduced serum creatinine, regardless of treatment.
Assuntos
Reanimação Cardiopulmonar , Citoproteção/efeitos dos fármacos , Estradiol/farmacologia , Parada Cardíaca/terapia , Nefropatias/prevenção & controle , Receptores Acoplados a Proteínas G/genética , Traumatismo por Reperfusão/prevenção & controle , Animais , Reanimação Cardiopulmonar/efeitos adversos , Citoproteção/genética , Feminino , Deleção de Genes , Parada Cardíaca/complicações , Parada Cardíaca/genética , Parada Cardíaca/patologia , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/etiologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Estrogênio , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologiaRESUMO
Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasive imaging probes that identify drug-resistant lesions are urgently needed to aid in the development of novel drugs and the effective utilization of established therapies for breast cancer. The protease receptor urokinase plasminogen activator receptor (uPAR) is a target that can be exploited for non-invasive imaging. The expression of uPAR has been associated with phenotypically aggressive breast cancer and acquired drug-resistance. Acquired drug-resistance was modeled in cell lines from two different breast cancer subtypes, the uPAR negative luminal A subtype and the uPAR positive triple negative subtype cell line MDA-MB-231. MCF-7 cells, cultured to be resistant to tamoxifen (MCF-7 TamR), were found to significantly over-express uPAR compared to the parental cell line. uPAR expression was maintained when resistance was modeled in triple-negative breast cancer by generating doxorubicin and paclitaxel resistant MDA-MB-231 cells (MDA-MB-231 DoxR and MDA-MB-231 TaxR). Using the antagonistic uPAR antibody 2G10, uPAR was imaged in vivo by near-infrared (NIR) optical imaging and (111)In-single photon emission computed tomography (SPECT). Tumor uptake of the (111)In-SPECT probe was high in the three drug-resistant xenografts (> 46 %ID/g) and minimal in uPAR negative xenografts at 72 hours post-injection. This preclinical study demonstrates that uPAR can be targeted for imaging breast cancer models of acquired resistance leading to potential clinical applications.
Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Anticorpos/análise , Antineoplásicos/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Feminino , Humanos , Imunoglobulina G/análise , Radioisótopos de Índio , Células MCF-7 , Camundongos , Imagem Multimodal , Imagem Óptica , Paclitaxel/farmacologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Tamoxifeno/farmacologia , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios XRESUMO
Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10(+) B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10(+) B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10(+) B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 h of reperfusion. Transfer of IL-10(+) B-cells markedly reduced infarct volume in WT recipient mice when given 24 h prior to or 4 h after MCAO. B-cell protected (24 h pre-MCAO) mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10(+) B-cell-treated group. Moreover, transfer of IL-10(+) B-cells 24 h before MCAO led to a significant preservation of regulatory immune subsets in the IL-10(+) B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10(+) regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression.
Assuntos
Transferência Adotiva , Subpopulações de Linfócitos B/transplante , Infarto da Artéria Cerebral Média/terapia , Interleucina-10/metabolismo , Animais , Antígenos CD19/análise , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Encéfalo/imunologia , Encéfalo/patologia , Quimiotaxia de Leucócito , Genes Reporter , Imunocompetência , Separação Imunomagnética , Imunomodulação , Infarto da Artéria Cerebral Média/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/imunologia , Baço/imunologia , Baço/patologia , Subpopulações de Linfócitos T/imunologiaRESUMO
Preclinical studies suggest progesterone is neuroprotective after cerebral ischemia. The gold standard for assessing intervention effects across studies within and between subgroups is to use meta-analysis based on individual animal data (IAD). Preclinical studies of progesterone in experimental stroke were identified from searches of electronic databases and reference lists. Corresponding authors of papers of interest were contacted to obtain IAD and, if unavailable, summary data were obtained from the publication. Data are given as standardized mean differences (SMDs, continuous data) or odds ratios (binary data), with 95% confidence intervals (95% CIs). In an unadjusted analysis of IAD and summary data, progesterone reduced standardized lesion volume (SMD -0.766, 95% CI -1.173 to -0.358, P<0.001). Publication bias was apparent on visual inspection of a Begg's funnel plot on lesion volume and statistically using Egger's test (P=0.001). Using individual animal data alone, progesterone was associated with an increase in death in adjusted analysis (odds ratio 2.64, 95% CI 1.17 to 5.97, P=0.020). Although progesterone significantly reduced lesion volume, it also appeared to increase the incidence of death after experimental stroke, particularly in young ovariectomized female animals. Experimental studies must report the effect of interactions on death and on modifiers, such as age and sex.
Assuntos
Fármacos Neuroprotetores/farmacologia , Progesterona/farmacologia , Progestinas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Masculino , Metanálise como Assunto , Fatores Sexuais , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologiaRESUMO
Both genetic inactivation and pharmacological inhibition of the cholesteryl ester synthetic enzyme acyl-CoA:cholesterol acyltransferase 1 (ACAT1) have shown benefit in mouse models of Alzheimer's disease (AD). In this study, we aimed to test the potential therapeutic applications of adeno-associated virus (AAV)-mediated Acat1 gene knockdown in AD mice. We constructed recombinant AAVs expressing artificial microRNA (miRNA) sequences, which targeted Acat1 for knockdown. We demonstrated that our AAVs could infect cultured mouse neurons and glia and effectively knockdown ACAT activity in vitro. We next delivered the AAVs to mouse brains neurosurgically, and demonstrated that Acat1-targeting AAVs could express viral proteins and effectively diminish ACAT activity in vivo, without inducing appreciable inflammation. We delivered the AAVs to the brains of 10-month-old AD mice and analyzed the effects on the AD phenotype at 12 months of age. Acat1-targeting AAV delivered to the brains of AD mice decreased the levels of brain amyloid-ß and full-length human amyloid precursor protein (hAPP), to levels similar to complete genetic ablation of Acat1. This study provides support for the potential therapeutic use of Acat1 knockdown gene therapy in AD.
Assuntos
Acetil-CoA C-Acetiltransferase/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , MicroRNAs/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Ordem dos Genes , Terapia Genética , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Neurônios/metabolismo , Transdução GenéticaRESUMO
Components of the plasminogen activation system, which are overexpressed in aggressive breast cancer subtypes, offer appealing targets for development of new diagnostics and therapeutics. By comparing gene expression data in patient populations and cultured cell lines, we identified elevated levels of the urokinase plasminogen activation receptor (uPAR, PLAUR) in highly aggressive breast cancer subtypes and cell lines. Recombinant human anti-uPAR antagonistic antibodies exhibited potent binding in vitro to the surface of cancer cells expressing uPAR. In vivo these antibodies detected uPAR expression in triple negative breast cancer (TNBC) tumor xenografts using near infrared imaging and (111)In single-photon emission computed tomography. Antibody-based uPAR imaging probes accurately detected small disseminated lesions in a tumor metastasis model, complementing the current clinical imaging standard (18)F-fluorodeoxyglucose at detecting non-glucose-avid metastatic lesions. A monotherapy study using the antagonistic antibodies resulted in a significant decrease in tumor growth in a TNBC xenograft model. In addition, a radioimmunotherapy study, using the anti-uPAR antibodies conjugated to the therapeutic radioisotope (177)Lu, found that they were effective at reducing tumor burden in vivo. Taken together, our results offer a preclinical proof of concept for uPAR targeting as a strategy for breast cancer diagnosis and therapy using this novel human antibody technology.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/prevenção & controle , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Proteínas Recombinantes/uso terapêutico , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Técnicas Imunoenzimáticas , Radioisótopos de Índio , Estudos Longitudinais , Camundongos , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The fields of nanotechnology and medicine have merged in the development of new imaging and drug delivery agents based on nanoparticle platforms. As one example, a mutant of bacteriophage MS2 can be differentially modified on the exterior and interior surfaces for the concurrent display of targeting functionalities and payloads, respectively. In order to realize their potential for use in in vivo applications, the biodistribution and circulation properties of this class of agents must first be investigated. A means of modulating and potentially improving the characteristics of nanoparticle agents is the appendage of PEG chains. Both MS2 and MS2-PEG capsids possessing interior DOTA chelators were labeled with (64)Cu and injected intravenously into mice possessing tumor xenografts. Dynamic imaging of the agents was performed using PET-CT on a single animal per sample, and the biodistribution at the terminal time point (24 h) was assessed by gamma counting of the organs ex vivo for 3 animals per agent. Compared to other viral capsids of similar size, the MS2 agents showed longer circulation times. Both MS2 and MS2-PEG bacteriophage behaved similarly, although the latter agent showed significantly less uptake in the spleen. This effect may be attributed to the ability of the PEG chains to mask the capsid charge. Although the tumor uptake of the agents may result from the enhanced permeation and retention (EPR) effect, selective tumor imaging may be achieved in the future by using exterior targeting groups.