Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 3(4): fcab252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34755111

RESUMO

Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.

2.
Hum Gene Ther ; 30(7): 794-801, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30838895

RESUMO

In a previous limb-girdle muscular dystrophy type 2D (LGMD2D) clinical trial, robust alpha-sarcoglycan gene expression was confirmed following intramuscular gene (SGCA) transfer. This paved the way for first-in-human isolated limb infusion (ILI) gene transfer trial to the lower limbs. Delivery of scAAVrh74.tMCK.hSGCA via an intravascular route through the femoral artery predicted improved ambulation. This method was initially chosen to avoid safety concerns required for large systemic vascular delivery viral loads. ILI methods were adopted from the extensive chemotherapy experience for treatment of malignancies confined to the extremities. Six LGMD2D subjects were enrolled in a dose-ascending open-label clinical trial. Safety of the procedure was initially assessed in the single limb of a non-ambulant affected adult at a dose of 1 × 1012 vg/kg. Subsequently, ambulatory children (aged 8-13 years) were enrolled and dosed bilaterally with either 1 × 1012 vg/kg/limb or 3 × 1012 vg/kg/limb. The six-minute walk test (6MWT) served as the primary clinical outcome; secondary outcomes included muscle strength (maximum voluntary isometric force testing) and SGCA expression at 6 months. All ambulatory participants except one had pre- and post-treatment muscle biopsies. All four subjects biopsied had confirmed SGCA gene delivery by immunofluorescence, Western blot analysis (14-25% of normal), and vector genome copies (5.4 × 103-7.7 × 104 vg/µg). Muscle strength in the knee extensors (assessed by force generation in kilograms) showed improvement in two subjects that correlated with an increase in fiber diameter post gene delivery. Six-minute walk times decreased or remained the same. Vascular delivery of AAVrh74.tMCK.hSGCA was effective at producing SGCA protein at low doses that correlated with vector copies and local functional improvement restricted to targeted muscles. Future trials will focus on systemic administration to enable targeting of proximal muscles to maximize clinical benefit.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Transgenes , Animais , Biomarcadores , Criança , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Transdução Genética , Resultado do Tratamento
3.
Mol Ther Methods Clin Dev ; 3: 16036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27331076

RESUMO

The reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV) serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH) to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG) throughout the central nervous system (CNS) and somatic tissues at a dose of 5E12 vg/kg. Treatment up to 3 months age improved learning ability in the Morris water maze at 7.5 months, and lifespan was normalized. In mice treated at 6 months age, behavioral performance was impaired at 7.5 months, but did not decline further when retested at 12 months, and lifespan was increased, but not normalized. Treatment at 9 months did not increase life-span, though the GAG storage pathology in the CNS was improved. The study suggests that there is potential for gene therapy intervention in MPS IIIA at intermediate stages of the disease, and extends the clinical relevance of our systemic scAAV9-hSGSH gene delivery approach.

4.
Mol Ther ; 23(4): 638-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25592334

RESUMO

Mucopolysaccharidosis (MPS) IIIA is a neuropathic lysosomal storage disease caused by deficiency in N-sulfoglucosamine sulfohydrolase (SGSH). Genome-wide gene expression microarrays in MPS IIIA mice detected broad molecular abnormalities (greater than or equal to twofold, false discovery rate ≤10) in numerous transcripts (314) in the brain and blood (397). Importantly, 22 dysregulated blood transcripts are known to be enriched in the brain and linked to broad neuronal functions. To target the root cause, we used a self-complementary AAVrh74 vector to deliver the human SGSH gene into 4-6 weeks old MPS IIIA mice by an intravenous injection. The treatment resulted in global central nervous system (CNS) and widespread somatic restoration of SGSH activity, clearance of CNS and somatic glycosaminoglycan storage, improved behavior performance, and significantly extended survival. The scAAVrh74-hSGSH treatment also led to the correction of the majority of the transcriptional abnormalities in the brain (95.9%) and blood (97.7%), of which 182 and 290 transcripts were normalized in the brain and blood, respectively. These results demonstrate that a single systemic scAAVrh74-hSGSH delivery mediated efficient restoration of SGSH activity and resulted in a near complete correction of MPS IIIA molecular pathology. This study also demonstrates that blood transcriptional profiles reflect the biopathological status of MPS IIIA, and also respond well to effective treatments.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Hidrolases/genética , Mucopolissacaridose III/terapia , Animais , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
5.
Hum Gene Ther Clin Dev ; 25(2): 72-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24720466

RESUMO

No treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease caused by autosomal recessive defect in α-N-acetylglucosaminidase (NAGLU). In anticipation of a clinical gene therapy treatment for MPS IIIB in humans, we tested the rAAV9-CMV-hNAGLU vector administration to cynomolgus monkeys (n=8) at 1E13 vg/kg or 2E13 vg/kg via intravenous injection. No adverse events or detectable toxicity occurred over a 6-month period. Gene delivery resulted in persistent global central nervous system and broad somatic transduction, with NAGLU activity detected at 2.9-12-fold above endogenous levels in somatic tissues and 1.3-3-fold above endogenous levels in the brain. Secreted rNAGLU was detected in serum. Low levels of preexisting anti-AAV9 antibodies (Abs) did not diminish vector transduction. Importantly, high-level preexisting anti-AAV9 Abs lead to reduced transduction in liver and other somatic tissues, but had no detectable impact on transgene expression in the brain. Enzyme-linked immunoabsorbent assay showed Ab responses to both AAV9 and rNAGLU in treated animals. Serum anti-hNAGLU Abs, but not anti-AAV9 Abs, correlated with the loss of circulating rNAGLU enzyme. However, serum Abs did not affect tissue rNAGLU activity levels. Weekly or monthly peripheral blood interferon-γ enzyme-linked immunospot assays detected a CD4(+) T-cell (Th-1) response to rNAGLU only at 4 weeks postinjection in one treated subject, without observable correlation to tissue transduction levels. The treatment did not result in detectable CTL responses to either AAV9 or rNAGLU. Our data demonstrate an effective and safe profile for systemic rAAV9-hNAGLU vector delivery in nonhuman primates, supporting its clinical potential in humans.


Assuntos
Acetilglucosaminidase/genética , Dependovirus/genética , Vetores Genéticos/metabolismo , Mucopolissacaridose III/terapia , Acetilglucosaminidase/imunologia , Acetilglucosaminidase/metabolismo , Animais , Anticorpos/sangue , Anticorpos/imunologia , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Dependovirus/imunologia , ELISPOT , Terapia Genética , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Humanos , Macaca fascicularis , Proteínas Recombinantes/sangue , Proteínas Recombinantes/líquido cefalorraquidiano , Células Th1/citologia , Células Th1/imunologia , Distribuição Tecidual
6.
PLoS One ; 8(11): e80142, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278249

RESUMO

Mucopolysaccharidosis (MPS) IIIB is a devastating neuropathic lysosomal storage disease with complex pathology. This study identifies molecular signatures in peripheral blood that may be relevant to MPS IIIB pathogenesis using a mouse model. Genome-wide gene expression microarrays on pooled RNAs showed dysregulation of 2,802 transcripts in blood from MPS IIIB mice, reflecting pathological complexity of MPS IIIB, encompassing virtually all previously reported and as yet unexplored disease aspects. Importantly, many of the dysregulated genes are reported to be tissue-specific. Further analyses of multiple genes linked to major pathways of neurodegeneration demonstrated a strong brain-blood correlation in amyloidosis and synucleinopathy in MPS IIIB. We also detected prion protein (Prnp) deposition in the CNS and Prnp dysregulation in the blood in MPS IIIB mice, suggesting the involvement of Prnp aggregation in neuropathology. Systemic delivery of trans-BBB-neurotropic rAAV9-hNAGLU vector mediated not only efficient restoration of functional α-N-acetylglucosaminidase and clearance of lysosomal storage pathology in the central nervous system (CNS) and periphery, but also the correction of impaired neurodegenerative molecular pathways in the brain and blood. Our data suggest that molecular changes in blood may reflect pathological status in the CNS and provide a useful tool for identifying potential CNS-specific biomarkers for MPS IIIB and possibly other neurological diseases.


Assuntos
Amiloidose/complicações , Biomarcadores/sangue , Encefalopatias/complicações , Mucopolissacaridose III/complicações , Doenças Priônicas/complicações , Sinucleínas/metabolismo , Acetilglucosaminidase/genética , Animais , Sistema Nervoso Central/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Terapia Genética , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA