Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(12): 102614, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265586

RESUMO

Collagen prolyl 4-hydroxylases (C-P4H) are α2ß2 tetramers, which catalyze the prolyl 4-hydroxylation of procollagen, allowing for the formation of the stable triple-helical collagen structure in the endoplasmic reticulum. The C-P4H α-subunit provides the N-terminal dimerization domain, the middle peptide-substrate-binding (PSB) domain, and the C-terminal catalytic (CAT) domain, whereas the ß-subunit is identical to the enzyme protein disulfide isomerase (PDI). The structure of the N-terminal part of the α-subunit (N-terminal region and PSB domain) is known, but the structures of the PSB-CAT linker region and the CAT domain as well as its mode of assembly with the ß/PDI subunit, are unknown. Here, we report the crystal structure of the CAT domain of human C-P4H-II complexed with the intact ß/PDI subunit, at 3.8 Å resolution. The CAT domain interacts with the a, b', and a' domains of the ß/PDI subunit, such that the CAT active site is facing bulk solvent. The structure also shows that the C-P4H-II CAT domain has a unique N-terminal extension, consisting of α-helices and a ß-strand, which is the edge strand of its major antiparallel ß-sheet. This extra region of the CAT domain interacts tightly with the ß/PDI subunit, showing that the CAT-PDI interface includes an intersubunit disulfide bridge with the a' domain and tight hydrophobic interactions with the b' domain. Using this new information, the structure of the mature C-P4H-II α2ß2 tetramer is predicted. The model suggests that the CAT active-site properties are modulated by α-helices of the N-terminal dimerization domains of both subunits of the α2-dimer.


Assuntos
Prolil Hidroxilases , Isomerases de Dissulfetos de Proteínas , Humanos , Domínio Catalítico , Colágeno/metabolismo , Peptídeos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Conformação Proteica
2.
Protein Sci ; 27(9): 1692-1703, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30168208

RESUMO

The peptide-substrate-binding (PSB) domain of collagen prolyl 4-hydroxylase (C-P4H, an α2 ß2 tetramer) binds proline-rich procollagen peptides. This helical domain (the middle domain of the α subunit) has an important role concerning the substrate binding properties of C-P4H, although it is not known how the PSB domain influences the hydroxylation properties of the catalytic domain (the C-terminal domain of the α subunit). The crystal structures of the PSB domain of the human C-P4H isoform II (PSB-II) complexed with and without various short proline-rich peptides are described. The comparison with the previously determined PSB-I peptide complex structures shows that the C-P4H-I substrate peptide (PPG)3 , has at most very weak affinity for PSB-II, although it binds with high affinity to PSB-I. The replacement of the middle PPG triplet of (PPG)3 to the nonhydroxylatable PAG, PRG, or PEG triplet, increases greatly the affinity of PSB-II for these peptides, leading to a deeper mode of binding, as compared to the previously determined PSB-I peptide complexes. In these PSB-II complexes, the two peptidyl prolines of its central P(A/R/E)GP region bind in the Pro5 and Pro8 binding pockets of the PSB peptide-binding groove, and direct hydrogen bonds are formed between the peptide and the side chains of the highly conserved residues Tyr158, Arg223, and Asn227, replacing water mediated interactions in the corresponding PSB-I complex. These results suggest that PxGP (where x is not a proline) is the common motif of proline-rich peptide sequences that bind with high affinity to PSB-II.


Assuntos
Peptídeos/química , Prolil Hidroxilases/química , Humanos , Peptídeos/metabolismo , Prolil Hidroxilases/metabolismo , Ligação Proteica , Conformação Proteica
3.
Virology ; 489: 34-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26704627

RESUMO

The capsid protein (CP) of Sesbania mosaic virus (SeMV, a T=3 plant virus) consists of a disordered N-terminal R-domain and an ordered S-domain. Removal of the R-domain results in the formation of T=1 particles. In the current study, the R-domain was replaced with unrelated polypeptides of similar lengths: the B-domain of Staphylococcus aureus SpA, and SeMV encoded polypeptides P8 and P10. The chimeric proteins contained T=3 or larger virus-like particles (VLPs) and could not be crystallized. The presence of metal ions during purification resulted in a large number of heterogeneous nucleoprotein complexes. N∆65-B (R domain replaced with B domain) could also be purified in a dimeric form. Its crystal structure revealed T=1 particles devoid of metal ions and the B-domain was disordered. However, the B-domain was functional in N∆65-B VLPs, suggesting possible biotechnological applications. These studies illustrate the importance of N-terminal residues, metal ions and robustness of the assembly process.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Vírus de RNA/metabolismo , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Metais/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Vírus de RNA/química , Vírus de RNA/genética
4.
J Struct Biol ; 193(2): 95-105, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26706030

RESUMO

Tobacco streak virus (TSV), the type member of Ilarvirus genus, is a major plant pathogen. TSV purified from infected plants consists of a ss-RNA genome encapsidated in spheroidal particles with diameters of 27, 30 and 33nm constructed from multiple copies of a single species of coat protein (CP) subunits. Apart from protecting the viral genome, CPs of ilarviruses play several key roles in the life cycle of these viruses. Unlike the related bromo and cucumoviruses, ilarvirus particles are labile and pleomorphic, which has posed difficulties in their crystallization and structure determination. In the current study, a truncated TSV-CP was crystallized in two distinct forms and their structures were determined at resolutions of 2.4Å and 2.1Å, respectively. The core of TSV CP was found to possess the canonical ß-barrel jelly roll tertiary structure observed in several other viruses. Dimers of CP with swapped C-terminal arms (C-arm) were observed in both the crystal forms. The C-arm was found to be flexible and is likely to be responsible for the polymorphic and pleomorphic nature of TSV capsids. Consistent with this observation, mutations in the hinge region of the C-arm that reduce the flexibility resulted in the formation of more uniform particles. TSV CP was found to be structurally similar to that of Alfalfa mosaic virus (AMV) accounting for similar mechanism of genome activation in alfamo and ilar viruses. This communication represents the first report on the structure of the CP from an ilarvirus.


Assuntos
Proteínas do Capsídeo/química , Ilarvirus/química , Vírus do Mosaico da Alfafa/química , Vírus do Mosaico da Alfafa/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/metabolismo , Simulação por Computador , Cristalografia por Raios X , Ilarvirus/fisiologia , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA