Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(6): e2311733121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285951

RESUMO

In contrast to prevalent strategies which make use of ß-sheet mimetics to block Aß fibrillar growth, in this study, we designed a series of sulfonyl-γ-AApeptide helices that targeted the crucial α-helix domain of Aß13-26 and stabilized Aß conformation to avoid forming the neurotoxic Aß oligomeric ß-sheets. Biophysical assays such as amyloid kinetics and TEM demonstrated that the Aß oligomerization and fibrillation could be greatly prevented and even reversed in the presence of sulfonyl-γ-AApeptides in a sequence-specific and dose-dependent manner. The studies based on circular dichroism, Two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) spectra unambiguously suggested that the sulfonyl-γ-AApeptide Ab-6 could bind to the central region of Aß42 and induce α-helix conformation in Aß. Additionally, Electrospray ionisation-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) was employed to rule out a colloidal mechanism of inhibitor and clearly supported the capability of Ab-6 for inhibiting the formation of Aß aggregated forms. Furthermore, Ab-6 could rescue neuroblastoma cells by eradicating Aß-mediated cytotoxicity even in the presence of pre-formed Aß aggregates. The confocal microscopy demonstrated that Ab-6 could still specifically bind Aß42 and colocalize into mitochondria in the cellular environment, suggesting the rescue of cell viability might be due to the protection of mitochondrial function otherwise impaired by Aß42 aggregation. Taken together, our studies indicated that sulfonyl-γ-AApeptides as helical peptidomimetics could direct Aß into the off-pathway helical secondary structure, thereby preventing the formation of Aß oligomerization, fibrillation and rescuing Aß induced cell cytotoxicity.


Assuntos
Amidas , Peptídeos beta-Amiloides , Amiloide , Amiloide/química , Conformação Proteica em alfa-Hélice , Conformação Molecular , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo
2.
Biotechnol Prog ; 39(6): e3381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531360

RESUMO

Elastin-like polypeptides (ELPs) are peptide-based biomaterials with residue sequence (VPGXG)n where X is any residue except proline. ELPs are a useful modality for delivering biologically active proteins (growth factors, protease inhibitors, anti-inflammatory peptides, etc.) as fusion proteins (ELP-FP). ELP-FPs are particularly cost-effective because they can be rapidly purified using Inverse Temperature Cycling (ITC) via the reversible formation and precipitation of entropically driven aggregates above a transition temperature (Tt ). When ELP fusion proteins (ELP-FPs) contain significant charge density at physiological pH, electrostatic repulsion between them severely inhibits aggregate formation. The literature does not currently describe methods for purifying ELP-FPs containing charged proteins on either side of the ELP sequence as fusion partners without organic solvents. Here, the isoelectric point (pI) of ELP-FPs is discussed as a means of neutralizing surface charges on ELP-FPs and increasing ITC yield to dramatically high levels. We use pI-based phase separation (pI-BPS) to purify ELP-FPs containing cationic and anionic fusion proteins. We report a dramatic increase in protein yield when using pI-BPS for purification of ELP-FPs. Proteins purified by this method also retain the functional activity of the protein present in the ELP-FP. Techniques developed here enable significant diversification of possible fusion proteins delivered by ELPs as ELP-FPs by allowing them to be produced and purified at higher quantities and yields.


Assuntos
Polipeptídeos Semelhantes à Elastina , Elastina , Ponto Isoelétrico , Elastina/química , Separação de Fases , Peptídeos/química , Proteínas Recombinantes de Fusão/genética
3.
Biomolecules ; 9(10)2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569739

RESUMO

Assembly of amyloid fibrils and small globular oligomers is associated with a significant number of human disorders that include Alzheimer's disease, senile systemic amyloidosis, and type II diabetes. Recent findings implicate small amyloid oligomers as the dominant aggregate species mediating the toxic effects in these disorders. However, validation of this hypothesis has been hampered by the dearth of experimental techniques to detect, quantify, and discriminate oligomeric intermediates from late-stage fibrils, in vitro and in vivo. We have shown that the onset of significant oligomer formation is associated with a transition in thioflavin T kinetics from sigmoidal to biphasic kinetics. Here we showed that this transition can be exploited for screening fluorophores for preferential responses to oligomer over fibril formation. This assay identified crystal violet as a strongly selective oligomer-indicator dye for lysozyme. Simultaneous recordings of amyloid kinetics with thioflavin T and crystal violet enabled us to separate the combined signals into their underlying oligomeric and fibrillar components. We provided further evidence that this screening assay could be extended to amyloid-ß peptides under physiological conditions. Identification of oligomer-selective dyes not only holds the promise of biomedical applications but provides new approaches for unraveling the mechanisms underlying oligomer versus fibril formation in amyloid assembly.


Assuntos
Amiloide/química , Benzotiazóis/química , Corantes Fluorescentes/química , Violeta Genciana/química , Amiloide/síntese química , Humanos , Cinética
4.
J Phys Chem B ; 123(27): 5678-5689, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31246474

RESUMO

Assembly and deposition of insoluble amyloid fibrils with a distinctive cross-ß-sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways dictated by initial solution conditions. Often, early stage, cytotoxic, small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs). Growing experimental evidence suggests that soluble gOs are off-pathway aggregates that do not directly convert into the final stage RFs. Yet, the kinetics of RFs aggregation under conditions that either promote or suppress the growth of gOs remain incompletely understood. Here we present a self-assembly model for amyloid fibril formation in the presence and absence of early stage off-pathway aggregates, driven by our experimental results on hen egg white lysozyme (HewL) and beta amyloid (Aß) aggregation. The model reproduces a range of experimental observations including the sharp boundary in the protein concentration above which the self-assembly of gOs occurs. This is possible when both primary and secondary RFs nucleation rates are allowed to have a nonlinear dependence on initial protein concentration, hinting toward more complex prenucleation and RFs assembly scenarios. Moreover, analysis of RFs lag period in the presence and absence of gOs indicates that these off-pathway aggregates have an inhibitory effect on RFs nucleation. Finally, we incorporate the effect of an Aß binding protein on the aggregation process in the model that allows us to identify the most suitable solution conditions for suppressing gOs and RFs formation.


Assuntos
Peptídeos beta-Amiloides/química , Muramidase/química , Animais , Galinhas , Modelos Moleculares , Solubilidade
5.
J Biol Chem ; 291(53): 27323-27333, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27879315

RESUMO

Fascin is an actin bundling protein that cross-links individual actin filaments into straight, compact, and stiff bundles, which are crucial for the formation of filopodia, stereocillia, and other finger-like membrane protrusions. The dysregulation of fascin has been implicated in cancer metastasis, hearing loss, and blindness. Here we identified monoubiquitination as a novel mechanism that regulates fascin bundling activity and dynamics. The monoubiquitination sites were identified to be Lys247 and Lys250, two residues located in a positive charge patch at the actin binding site 2 of fascin. Using a chemical ubiquitination method, we synthesized chemically monoubiquitinated fascin and determined the effects of monoubiquitination on fascin bundling activity and dynamics. Our data demonstrated that monoubiquitination decreased the fascin bundling EC50, delayed the initiation of bundle assembly, and accelerated the disassembly of existing bundles. By analyzing the electrostatic properties on the solvent-accessible surface of fascin, we proposed that monoubiquitination introduced steric hindrance to interfere with the interaction between actin filaments and the positively charged patch at actin binding site 2. We also identified Smurf1 as a E3 ligase regulating the monoubiquitination of fascin. Our findings revealed a previously unidentified regulatory mechanism for fascin, which will have important implications for the understanding of actin bundle regulation under physiological and pathological conditions.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ubiquitina/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Ratos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Mol Biosyst ; 8(1): 308-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21979461

RESUMO

Developing a comprehensive description of the equilibrium structural ensembles for intrinsically disordered proteins (IDPs) is essential to understanding their function. The p53 transactivation domain (p53TAD) is an IDP that interacts with multiple protein partners and contains numerous phosphorylation sites. Multiple techniques were used to investigate the equilibrium structural ensemble of p53TAD in its native and chemically unfolded states. The results from these experiments show that the native state of p53TAD has dimensions similar to a classical random coil while the chemically unfolded state is more extended. To investigate the molecular properties responsible for this behavior, a novel algorithm that generates diverse and unbiased structural ensembles of IDPs was developed. This algorithm was used to generate a large pool of plausible p53TAD structures that were reweighted to identify a subset of structures with the best fit to small angle X-ray scattering data. High weight structures in the native state ensemble show features that are localized to protein binding sites and regions with high proline content. The features localized to the protein binding sites are mostly eliminated in the chemically unfolded ensemble; while, the regions with high proline content remain relatively unaffected. Data from NMR experiments support these results, showing that residues from the protein binding sites experience larger environmental changes upon unfolding by urea than regions with high proline content. This behavior is consistent with the urea-induced exposure of nonpolar and aromatic side-chains in the protein binding sites that are partially excluded from solvent in the native state ensemble.


Assuntos
Dobramento de Proteína , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Cromatografia em Gel , Humanos , Hidrodinâmica , Luz , Modelos Moleculares , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Ureia/metabolismo , Difração de Raios X
8.
PLoS One ; 6(4): e18171, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21483680

RESUMO

Formation of large protein fibrils with a characteristic cross ß-sheet architecture is the key indicator for a wide variety of systemic and neurodegenerative amyloid diseases. Recent experiments have strongly implicated oligomeric intermediates, transiently formed during fibril assembly, as critical contributors to cellular toxicity in amyloid diseases. At the same time, amyloid fibril assembly can proceed along different assembly pathways that might or might not involve such oligomeric intermediates. Elucidating the mechanisms that determine whether fibril formation proceeds along non-oligomeric or oligomeric pathways, therefore, is important not just for understanding amyloid fibril assembly at the molecular level but also for developing new targets for intervening with fibril formation. We have investigated fibril formation by hen egg white lysozyme, an enzyme for which human variants underlie non-neuropathic amyloidosis. Using a combination of static and dynamic light scattering, atomic force microscopy and circular dichroism, we find that amyloidogenic lysozyme monomers switch between three different assembly pathways: from monomeric to oligomeric fibril assembly and, eventually, disordered precipitation as the ionic strength of the solution increases. Fibril assembly only occurred under conditions of net repulsion among the amyloidogenic monomers while net attraction caused precipitation. The transition from monomeric to oligomeric fibril assembly, in turn, occurred as salt-mediated charge screening reduced repulsion among individual charged residues on the same monomer. We suggest a model of amyloid fibril formation in which repulsive charge interactions are a prerequisite for ordered fibril assembly. Furthermore, the spatial extent of non-specific charge screening selects between monomeric and oligomeric assembly pathways by affecting which subset of denatured states can form suitable intermolecular bonds and by altering the energetic and entropic requirements for the initial intermediates emerging along the monomeric vs. oligomeric assembly path.


Assuntos
Amiloide/química , Muramidase/química , Multimerização Proteica , Amiloide/metabolismo , Animais , Precipitação Química , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Cinética , Luz , Muramidase/metabolismo , Desnaturação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Espalhamento de Radiação , Cloreto de Sódio/farmacologia , Temperatura
9.
J Neurosci ; 30(46): 15374-82, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21084594

RESUMO

Molecular chaperones regulate the aggregation of a number of proteins that pathologically misfold and accumulate in neurodegenerative diseases. Identifying ways to manipulate these proteins in disease models is an area of intense investigation; however, the translation of these results to the mammalian brain has progressed more slowly. In this study, we investigated the ability of one of these chaperones, heat shock protein 27 (Hsp27), to modulate tau dynamics. Recombinant wild-type Hsp27 and a genetically altered version of Hsp27 that is perpetually pseudo-phosphorylated (3×S/D) were generated. Both Hsp27 variants interacted with tau, and atomic force microscopy and dynamic light scattering showed that both variants also prevented tau filament formation. However, extrinsic genetic delivery of these two Hsp27 variants to tau transgenic mice using adeno-associated viral particles showed that wild-type Hsp27 reduced neuronal tau levels, whereas 3×S/D Hsp27 was associated with increased tau levels. Moreover, rapid decay in hippocampal long-term potentiation (LTP) intrinsic to this tau transgenic model was rescued by wild-type Hsp27 overexpression but not by 3×S/D Hsp27. Because the 3×S/D Hsp27 mutant cannot cycle between phosphorylated and dephosphorylated states, we can conclude that Hsp27 must be functionally dynamic to facilitate tau clearance from the brain and rescue LTP; however, when this property is compromised, Hsp27 may actually facilitate accumulation of soluble tau intermediates.


Assuntos
Proteínas de Choque Térmico HSP27/fisiologia , Simulação de Dinâmica Molecular , Plasticidade Neuronal/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA