Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Oncol ; 14: 1427802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087024

RESUMO

Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.

2.
Cureus ; 16(6): e61819, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38975419

RESUMO

Rhegmatogenous retinal detachment (RRD) is an ocular emergency as it is sight-threatening and requires urgent surgical intervention. Ulcerative colitis (UC) is an immune-mediated inflammatory bowel disease that can present with ocular manifestations. The objective of this case report is to share the rare presentation of RRD associated with UC leading to diagnosis and management dilemmas. A 35-year-old man with active UC presented with a right chronic red eye for two months. The best corrected visual acuity (BCVA) was 6/6 in both eyes (OU). On examination, sectoral inferotemporal anterior scleritis (AS) with subclinical inferior RRD with peripheral holes in the lattice at the 6 o'clock position was noted. There was no posterior vitreous detachment. Optical coherence tomography (OCT) delineated the RRD objectively and was non-progressive for nine months. Barricade laser was given, in addition to intravenous methylprednisolone (IVMP), followed by a tapering dose of oral prednisolone and topical dexamethasone 0.1% over three months. Over a year, the scleritis resolved. However, six months later, while still on immunomodulating agents, the inferior RRD progressed on OCT. Segmental scleral buckle, indirect laser retinopexy, and subtenon triamcinolone injection were performed. IVMP 1 g per day was given for three days prior to surgery. Two months later, his BCVA was 6/6, with signs of fluid resorption and normal intraocular pressure. No recurrent AS was seen. Treatment of non-progressive, subclinical RRD patients with UC and active AS can be delayed with regular follow-up. When RRD progressed and there was no AS activity, it was the window of opportunity for the success of scleral buckle and perioperative steroids.

3.
Int J Biol Macromol ; 268(Pt 1): 131743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653426

RESUMO

Genotoxic DNA damaging agents are the choice of chemicals for studying DNA repair pathways and the associated genome instability. One such preferred laboratory chemical is methyl methanesulfonate (MMS). MMS, an SN2-type alkylating agent known for its ability to alkylate adenine and guanine bases, causes strand breakage. Exploring the outcomes of MMS interaction with DNA and the associated cytotoxicity will pave the way to decipher how the cell confronts methylation-associated stress. This study focuses on an in-depth understanding of the structural instability, induced antigenicity on the DNA molecule, cross-reactive anti-DNA antibodies, and cytotoxic potential of MMS in peripheral lymphocytes and cancer cell lines. The findings are decisive in identifying the hazardous nature of MMS to alter the intricacies of DNA and morphology of the cell. Structural alterations were assessed through UV-Vis, fluorescence, liquid chromatography, and mass spectroscopy (LCMS). The thermal instability of DNA was analyzed using duplex melting temperature profiles. Scanning and transmission electron microscopy revealed gross topographical and morphological changes. MMS-modified DNA exhibited increased antigenicity in animal subjects. MMS was quite toxic for the cancer cell lines (HCT116, A549, and HeLa). This research will offer insights into the potential role of MMS in inflammatory carcinogenesis and its progression.


Assuntos
Dano ao DNA , DNA , Inflamação , Metanossulfonato de Metila , Humanos , DNA/química , Inflamação/induzido quimicamente , Inflamação/patologia , Animais , Carcinogênese/efeitos dos fármacos , Células HeLa , Células A549 , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Células HCT116
4.
Mol Cell Biochem ; 479(4): 895-913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37247161

RESUMO

Cancer is a group of diseases characterized by uncontrolled cellular growth, abnormal morphology, and altered proliferation. Cancerous cells lose their ability to act as anchors, allowing them to spread throughout the body and infiltrate nearby cells, tissues, and organs. If these cells are not identified and treated promptly, they will likely spread. Around 70% of female breast cancers are caused by a mutation in the BRCA gene, specifically BRCA1. The absence of progesterone, oestrogen and HER2 receptors (human epidermal growth factor) distinguishes the TNBC subtype of breast cancer. There were approximately 6,85,000 deaths worldwide and 2.3 million new breast cancer cases in women in 2020. Breast cancer is the most common cancer globally, affecting 7.8 million people at the end of 2020. Compared to other cancer types, breast cancer causes more women to lose disability-adjusted life years (DALYs). Worldwide, women can develop breast cancer at any age after puberty, but rates increase with age. The maintenance of mammary stem cell stemness is disrupted in TNBC, governed by signalling cascades controlling healthy mammary gland growth and development. Interpreting these essential cascades may facilitate an in-depth understanding of TNBC cancer and the search for an appropriate therapeutic target. Its treatment remains challenging because it lacks specific receptors, which renders hormone therapy and medications ineffective. In addition to radiotherapy, numerous recognized chemotherapeutic medicines are available as inhibitors of signalling pathways, while others are currently undergoing clinical trials. This article summarizes the vital druggable targets, therapeutic approaches, and strategies associated with TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proliferação de Células , Transdução de Sinais , Mutação
5.
Asian Pac J Cancer Prev ; 24(12): 4167-4177, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156852

RESUMO

OBJECTIVE: Cure models are frequently used in survival analysis to account for a cured fraction in the data. When there is a cure rate present, researchers often prefer cure models over parametric models to analyse the survival data. These models enable the ability to define the probability distribution of survival durations for patients who are at risk. Various distributions can be considered for the survival times, such as Exponentiated Weibull Exponential (EWE), Exponential Exponential (EE), Weibull and lognormal distribution. The objective of this research is to choose the most appropriate distribution that accurately represents the survival times of patients who have not been cured. This will be accomplished by comparing various non-mixture cure models that are based on the EWE distribution with its sub-distributions, and distributions distinct from those belonging to the EWE distribution family. MATERIAL AND METHODS: A sample of 85 patients diagnosed with superficial bladder tumours was selected to be used in fitting the non-mixture cure model. In order to estimate the parameters of the suggested model, which takes into account the presence of a cure rate, censored data, and covariates, we utilized the maximum likelihood estimation technique using R software version 3.5.7. RESULT: Upon conducting a comparison of various parametric models fitted to the data, both with and without considering the cure fraction and without incorporating any predictors, the EE distribution yields the lowest AIC, BIC, and HQIC values among all the distributions considered in this study, (1191.921/1198.502, 1201.692/1203.387, 1195.851/1200.467). Furthermore, when considering a non-mixture cure model utilizing the EE distribution along with covariates, an estimated ratio was obtained between the probabilities of being cured for placebo and thiotepa groups (and its 95% confidence intervals) were 0.76130 (0.13914, 6.81863). CONCLUSION: The findings of this study indicate that EE distribution is the optimal selection for determining the duration of survival in individuals diagnosed with bladder cancer.


Assuntos
Modelos Estatísticos , Neoplasias da Bexiga Urinária , Humanos , Análise de Sobrevida , Neoplasias da Bexiga Urinária/terapia
6.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014347

RESUMO

Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the KATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the KATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the KATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Aorta , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Endotélio Vascular/metabolismo , Masculino , NAD/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Vasodilatação
7.
Artigo em Inglês | MEDLINE | ID: mdl-35685736

RESUMO

Oxidative stress and inflammation have been shown to interact and have the role of importance in causing diabetic nephropathy complications. Fucoidan has a strong antioxidant and anti-inflammation effect, so the aim of this research was to evaluate the antioxidative stress and anti-inflammatory effect of fucoidan nanoparticles against nephropathy of streptozotocin-induced diabetes in rats. Fucoidan nanoparticles are characterized using dynamic light scattering (DLS) and scanning electron microscope (SEM). The rats were randomized into the control group (were given with aquadest), streptozotocin group (were injected with streptozotocin at a dose of 55 mg/kg BW i.p.), and fucoidan nanoparticle group (were given orally with fucoidan at doses 75, 150, and 300 mg/kg BW and then injected streptozotocin at a dose of 55 mg/kg BW i.p.). The blood was taken to evaluate the level of blood urea nitrogen (BUN) and creatinine. The kidney tissues were collected to measure malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) by ELISA; superoxide dismutase (SOD), and glutathione peroxidase (GPx) by immunohistochemical staining and histological observation by Hematoxylin & Eosin (H&E) staining. The DLS demonstrated that the fucoidan nanoparticle size was 330.6 ± 58.8 nm, and the SEM showed an irregular shape with a rough surface image. The administration of streptozotocin significantly increased BUN, creatinine, MDA, IL-6, and TNF-α levels, whereas expression of SOD and GPx decreased as compared with the control group (p < 0.05). The administration of fucoidan nanoparticles only at a dose of 300 mg/kg BW significantly decreases BUN, creatinine, MDA, IL-6, and TNF-α levels. However, fucoidan nanoparticles at a dose of 300 mg/kg BW significantly increase SOD and GPx expression as compared with the streptozotocin group (p < 0.05). The administration of streptozotocin caused the loss of normal kidney cell structure and necrosis, while treatment with fucoidan nanoparticles improved renal cell necrosis. It can be concluded that fucoidan nanoparticles are promising agents in terms of the protection afforded against streptozotocin-induced nephropathy through antioxidative stress by decreasing MDA and increasing SOD and GPx and through anti-inflammatory effect by decreasing levels of IL-6 and TNF-α.

8.
Sci Rep ; 12(1): 8904, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618759

RESUMO

Despite the extensive reports on the potential hazard of magnetic field (MF) exposures on humans, there are also concurrently reported on the improved proliferative property of stem cells at optimum exposure. However, the effect on mesenchymal stem cells (MSCs) remains unknown. Therefore, we aimed to investigate the impact of induced static MF (SMF) on human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) using Samarium Cobalt (SmCO5). At passage 3, hUC-MSCs (1 × 104) were exposed to 21.6 mT SMF by a direct exposure (DE) showed a significantly higher cell count (p < 0.05) in the growth kinetics assays with the shortest population doubling time relative to indirect exposure and negative control. The DE group was committed into the cell cycle with increased S phase (55.18 ± 1.38%) and G2/M phase (21.75 ± 1.38%) relative to the NC group [S-phase (13.54 ± 2.73%); G2/M phase (8.36 ± 0.28%)]. Although no significant changes were observed in the immunophenotype, the DE group showed an elevated expression of pluripotency-associated markers (OCT4, SOX2, NANOG, and REX1). These results suggest that the MFs could potentially induce proliferation of MSCs, a promising approach to promote stem cells propagation for clinical therapy and research without compromising the stemness of hUC-MSCs.


Assuntos
Células-Tronco Mesenquimais , Cordão Umbilical , Proliferação de Células , Células Cultivadas , Cobalto , Humanos , Fenômenos Magnéticos , Samário
10.
Oxid Med Cell Longev ; 2022: 3081397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509840

RESUMO

The antioxidant can inhibit oxidative stress and apoptosis, which has a role in an important mechanism on diabetic-induced cardiac cell damage. The research goal was to prove the antioxidative stress and antiapoptosis effect of chitosan nanoparticles as a cardioprotector in streptozotocin-induced diabetic rats. Scanning electron microscope (SEM) and dynamic light scattering (DLS) characterize the chitosan nanoparticles. This research is a laboratory experiment which consists of the control group (rats were given distilled water), the streptozotocin group (rats were injected streptozotocin at dose of 55 mg/kg BW i.p), and the chitosan nanoparticle group (rats were given streptozotocin at dose 55 mg/kg BW i.p, and then given chitosan nanoparticles at dose 75 mg/kg BW, 150 mg/kg BW, and 300 mg/kg BW peroral). Creatine kinase-myoglobin (CK-MB) and lactate dehydrogenase (LDH) were measured from the blood sample. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) from cardiac tissue were examined by ELISA; nuclear factor erythroid 2-related factor 2 (Nrf2) was evaluated by western blotting; B-cell lymphoma 2 (Bcl-2) and Caspase-3 expression were investigated by immunohistochemical staining and also were evaluated histological preparation by hematoxylin & eosin (H&E) staining. The chitosan nanoparticles have a rough surface and an irregular shape. Its size is 247.3 ± 38.1 µm. Streptozotocin injection significantly increased the levels of CK-MB, LDH, MDA, and expression of caspase-3. In contrast, the levels of SOD, GPx, Nrf2, and expression of Bcl-2 decreased as compared with the control group (p < 0.05). This is accompanied by the loss of normal cardiac cell structure and necrosis. The administration of chitosan nanoparticles significantly reduced levels of CK-MB, LDH, MDA, and expression of Caspase-3. However, the levels of SOD, GPx, Nrf2, and expression of Bcl-2 increased as compared with the streptozotocin group (p < 0.05). And also, chitosan nanoparticles inhibited cell necrosis in diabetic rats. This study suggests that the administration of chitosan nanoparticles can protect cardiac cell damage in diabetic rats through antioxidative stress by decreasing ROS and increasing Nrf2 expression, level of SOD, and GPx and through antiapoptosis by increasing expression of Bcl-2 and decreasing expression of Caspase-3.


Assuntos
Quitosana , Diabetes Mellitus Experimental , Nanopartículas , Animais , Caspase 3/metabolismo , Quitosana/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Glutationa Peroxidase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Nanopartículas/química , Necrose , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/farmacologia , Superóxido Dismutase/metabolismo
11.
J Biomol Struct Dyn ; 40(16): 7598-7611, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33719845

RESUMO

Methyl methanesulfonate (MMS) is a highly toxic DNA-alkylating agent that has a potential to damage the structural integrity of DNA. This work employed multiple biophysical and computational methods to report the MMS mediated structural alterations in the DNA (MMS-DNA). Spectroscopic techniques and gel electrophoresis studies revealed MMS induced exposure of chromophoric groups of DNA; methylation mediated anti→syn conformational change, DNA fragmentation and reduced nucleic acid stability. MMS induced single-stranded regions in the DNA were observed in nuclease S1 assay. FT-IR results indicated MMS mediated loss of the assigned peaks for DNA, partial loss of C-O ribose, loss of deoxyribose region, C-O stretching and bending of the C-OH groups of hexose sugar, a progressive shift in the assigned guanine and adenine peaks, loss of thymine peak, base stacking and presence of C-O-H vibrations of glucose and fructose, indicating direct strand breaks in DNA due to backbone loss. Isothermal titration calorimetry showed MMS-DNA interaction as exothermic with moderate affinity. Dynamic light scattering studies pointed towards methylation followed by the generation of single-stranded regions. Electron microscopy pictured the loss of alignment in parallel base pairs and showed the formation of fibrous aggregates in MMS-DNA. Molecular docking found MMS in close contact with the ribose sugar of DNA backbone having non-bonded interactions. Molecular dynamic simulations confirmed that MMS is capable of interacting with DNA at two levels, one at the level of nitrogenous bases and another at the DNA backbone. The study offers insights into the molecular interaction of MMS and DNA.Communicated by Ramaswamy H. Sarma.


Assuntos
DNA , Ribose , Dano ao DNA , Reparo do DNA , Metanossulfonato de Metila/toxicidade , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Front Oncol ; 11: 612009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490076

RESUMO

Mitochondria play important roles in regulating cell bioenergetics status and reactive oxygen species (ROS) generation. ROS-induced mitochondrial damage is among the main intracellular signal inducers of autophagy. Autophagy is a cellular catabolic process that regulates protein and organelle turnover, while a selective form of autophagy, mitophagy, specifically targets dysfunctional mitochondrial degradation. This study aims to measure the levels of autophagy, mitophagy, oxidative stress, and apoptosis in invasive breast carcinoma tissues using immunohistochemistry (IHC). Tissue microarrays of 76 patients with breast cancer were stained with six IHC markers (MnSOD, Beclin-1, LC3, BNIP3, Parkin, and cleaved caspase 3). The expression intensity was determined for each tumor tissue and the adjacent tumor-matched control tissues. Intermediate and strong staining scores of MnSOD, Beclin-1, LC-3, BNIP-3, and Parkin were significantly higher in tumor tissues compared to the adjacent matched control. The scoring intensity was further classified into tissues with negative staining and positive staining, which showed that positive scores of Beclin-1 and Parkin were significantly high in tumor tissues compared to other markers. Positive association was also noted between BNIP-3 and Beclin-1 as well as LC-3 and cleaved caspase-3 immunostaining. To our knowledge, this is one of the first studies that measure both mitophagy and autophagy in the same breast cancer tissues and the adjacent matched control. The findings from this study will be of great potential in identifying new cancer biomarkers and inspire significant interest in applying anti-autophagy therapies as a possible treatment for breast cancer.

13.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299638

RESUMO

The endoplasmic reticulum (ER) plays a multifunctional role in lipid biosynthesis, calcium storage, protein folding, and processing. Thus, maintaining ER homeostasis is essential for cellular functions. Several pathophysiological conditions and pharmacological agents are known to disrupt ER homeostasis, thereby, causing ER stress. The cells react to ER stress by initiating an adaptive signaling process called the unfolded protein response (UPR). However, the ER initiates death signaling pathways when ER stress persists. ER stress is linked to several diseases, such as cancer, obesity, and diabetes. Thus, its regulation can provide possible therapeutic targets for these. Current evidence suggests that chronic hyperglycemia and hyperlipidemia linked to type II diabetes disrupt ER homeostasis, thereby, resulting in irreversible UPR activation and cell death. Despite progress in understanding the pathophysiology of the UPR and ER stress, to date, the mechanisms of ER stress in relation to type II diabetes remain unclear. This review provides up-to-date information regarding the UPR, ER stress mechanisms, insulin dysfunction, oxidative stress, and the therapeutic potential of targeting specific ER stress pathways.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Estresse Oxidativo , Transdução de Sinais , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia
14.
Asian Pac J Cancer Prev ; 22(4): 1045-1053, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33906295

RESUMO

OBJECTIVE: Cure rate models are survival models, commonly applied to model survival data with a cured fraction. In the existence of a cure rate, if the distribution of survival times for susceptible patients is specified, researchers usually prefer cure models to parametric models. Different distributions can be assumed for the survival times, for instance, generalized modified Weibull (GMW), exponentiated Weibull (EW), and log-beta Weibull. The purpose of this study is to select the best distribution for uncured patients' survival times by comparing the mixture cure models based on the GMW distribution and its particular cases. MATERIALS AND METHODS: A data set of 91 patients with high-risk acute lymphoblastic leukemia (ALL) followed for five years from 1982 to 1987 was chosen for fitting the mixture cure model. We used the maximum likelihood estimation technique via R software 3.6.2 to obtain the estimates for parameters of the proposed model in the existence of cure rate, censored data, and covariates. For the best model choice, the Akaike information criterion (AIC) was implemented. RESULTS: After comparing different parametric models fitted to the data, including or excluding cure fraction, without covariates, the smallest AIC values were obtained by the EW and the GMW distributions, (953.31/969.35) and (955.84/975.99), respectively. Besides, assuming a mixture cure model based on GMW with covariates, an estimated ratio between cure fractions for allogeneic and autologous bone marrow transplant groups (and its 95% confidence intervals) were 1.42972 (95% CI: 1.18614 - 1.72955). CONCLUSION: The results of this study reveal that the EW and the GMW distributions are the best choices for the survival times of Leukemia patients.
.


Assuntos
Modelos Estatísticos , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Análise de Sobrevida , Humanos , Funções Verossimilhança , Distribuições Estatísticas
15.
J Biochem Mol Toxicol ; 34(12): e22587, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32726518

RESUMO

Colorectal cancer is one of the most leading death-causing cancers in the world. Vernodalin, a cytotoxic sesquiterpene, has been reported to possess anticancer properties against human breast cancer cells. We aimed to examine the anticancer mechanism of vernodalin on human colon cancer cells. Vernodalin was used on human colon cancer cells, HT-29 and HCT116. The cytotoxicity of vernodalin on human colon cancer cells was determined through in vitro 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay. Small interfering RNA was used to analyze the cascade activation of mitogen-activated protein kinase (MAPK) pathway, c-Jun N-terminal kinase (JNK) in HT-29, and HCT116 cells against vernodalin treatment. The protein expressions of caspase 3, Bcl-2, and Bax were examined through Western blot analysis. Immunoblot analysis on the JNK, ERK, and p38 MAPK pathways showed increased activation due to vernodalin treatment. It was proven from the JNK and p38 inhibition test that both pathways are significantly activated by vernodalin to induce apoptosis. Our results, collectively, showed the apoptosis-induced anticancer mechanism of vernodalin on human colon cancer cells that was mediated through the activation of JNK pathway and apoptotic regulator proteins. These results suggest that vernodalin could be developed as a potent chemotherapeutic agent for human colorectal cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ativação Enzimática , Células HCT116 , Células HT29 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/farmacologia
16.
Biomolecules ; 10(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570769

RESUMO

Stingless bees are a type of honey producers that commonly live in tropical countries. Their use for honey is being abandoned due to its limited production. However, the recent improvements in stingless bee honey production, particularly in South East Asia, have brought stingless bee products back into the picture. Although there are many stingless bee species that produce a wide spread of products, known since old eras in traditional medicine, the modern medical community is still missing more investigational studies on stingless bee products. Whereas comprehensive studies in the current era attest to the biological and medicinal properties of honeybee (Apis mellifera) products, the properties of stingless bee products are less known. This review highlights for the first time the medicinal benefits of stingless bee products (honey, propolis, pollen and cerumen), recent investigations and promising future directions. This review emphasizes the potential antioxidant properties of these products that in turn play a vital role in preventing and treating diseases associated with oxidative stress, microbial infections and inflammatory disorders. Summarizing all these data and insights in one manuscript may increase the commercial value of stingless bee products as a food ingredient. This review will also highlight the utility of stingless bee products in the context of medicinal and therapeutic properties, some of which are yet to be discovered.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Mel/análise , Animais , Anti-Infecciosos/química , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Abelhas , Humanos , Estrutura Molecular
17.
Front Pharmacol ; 10: 1295, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749703

RESUMO

Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, and heart failure are the leading causes of morbidity and mortality worldwide. One of the major transcription factors widely associated with CVDs is nuclear factor-kappa B (NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes activation of transcription factors leading to inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal products with cardiovascular protective properties. Flavonoids can be classified into six subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate the expression of pro-inflammatory genes leading to the attenuation of the inflammatory responses underlying various cardiovascular pathology. This review presents an update on the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting the therapeutic potential of these natural compounds in various CVDs.

18.
Malays J Med Sci ; 26(2): 30-39, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31447606

RESUMO

BACKGROUND: There has been increasing evidence showing that stingless bee honey exhibits anti-oxidant, anti-inflammatory and anti-cancer properties. Pharmacologically-active components in honey such as flavonoids and phenolic constituents are known to contribute to its medicinal benefits. To the best of our knowledge, this is the first study on evaluating anti-cancer effects of locally-produced Malaysian stingless bee honey from Heterotrigona itama sp. on malignant glioma cells. METHODS: Proliferation and apoptosis studies of U-87 MG cells following stingless bee honey treatment were carried out using MTS assay and acridine orange/propidium iodide dual staining, respectively. RESULTS: Results demonstrated time and dose-dependent cytotoxicity using 0.625%, 1.25% and 10% stingless bee honey (P < 0.05). IC50 values were calculated using cells treated with 10% stingless bee honey. It was also observed that 10% stingless bee honey induced nuclear shrinkage, chromatin condensation and nucleus fragmentation, indicating that cellular changes were consistent with the apoptotic characteristics of the cells. CONCLUSION: These data provide a good basis for further evaluation of the medicinal properties of stingless bee honey from Heterotrigona itama sp. This source of honey may serve as a potential therapy for malignant glioma.

19.
PeerJ ; 6: e5577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245930

RESUMO

Combination Index (CI) analysis suggested that MBIC and doxorubicin synergistically inhibited up to 97% of cell proliferation in ER+/PR+MCF-7 and triple negative MDA-MB-231 breast cancer cell lines. Moreover, treatment of the breast cancer cells with the combined drugs resulted in lower IC50 values in contrast to the individual drug treatment. Small noncoding microRNAs (miRNA) may function as non-mutational gene regulators at post-transcriptional level of protein synthesis. In the present study, the effect of the combined treatment of MBIC and doxorubicin on the expression level of several miRNAs including miR-34a, miR-146a, miR-320a and miR-542 were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. These miRNAs have the potential to alter the protein level of survivin, the anti-apoptotic protein and reduce the metastatic activity in human breast cancer cell lines by interfering with the nuclear accumulation of NF-κB. Our results demonstrated the several fold changes in expression of miRNAs, which is drug and cell line dependent. This finding demonstrated a functional synergistic network between miR-34a, miR-320a and miR-542 that are negatively involved in post-transcriptional regulation of survivin in MCF-7 cells. While in MDA-MB-231 cells, changes in expression level of miR-146a was correlated with inhibition of the nuclear translocation of NF-κB. The overall result suggested that alteration in protein level and location of survivin and NF-κB by miR-34a, miR-320a, miR-146a and miR-542, remarkably influenced the synergistic enhancement of combined MBIC and doxorubicin in treatment of aggressive and less aggressive human breast cancer cell lines.

20.
Phytomedicine ; 42: 144-151, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29655680

RESUMO

BACKGROUND: Targeting autophagy is emerging as a promising strategy in cancer therapeutics in recent years. Autophagy can be modulated to drive cancer cell deaths that are notoriously resistant to apoptotic-inducing drugs. In addition, autophagy has been implicated as a prosurvival mechanism in mediating cancer chemoresistance. Our previous study has demonstrated that Panduratin A (PA), a plant-derived active compound exploits ER-stress-mediated apoptosis as its cytotoxic mechanism on melanoma. PURPOSE: Our previous proteomics analysis revealed that treatment with PA resulted in the upregulation of an autophagy marker, LC3B in melanoma cells. Therefore, the present study sought to investigate the role of PA-induced autophagy in melanoma cells. METHODS: Transmission electron microscopy was performed for examination of autophagic ultra-structures in PA-treated A375 cells. Cytoplasmic LC3B and p62/SQSMT1 punctate structures were detected using immunofluorescene staining. Expression levels of LC3B II, p62/SQSMT1, ATG 12, Beclin 1, phospho S6 (ser235/236), phospho AMPK (Thr172) and cleaved PARP were evaluated by western blotting. RESULTS: Autophagosomes, autolysosomes and punctuates of LC3 proteins could be observed in PA-treated A375 cells. PA-induced autophagy in A375 melanoma cells was found to be mediated through the inhibition of mTOR signaling and activation of AMPK pathway. Furthermore, we showed that PA-induced apoptosis was increased in the presence of an autophagy inhibitor, signifying the cytoprotective effect of PA-induced autophagy in melanoma cells. CONCLUSION: Taken together, results from the present study suggest that the inhibition of autophagy by targeting mTOR and AMPK could potentiate the cytotoxicity effects of PA on melanoma cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Chalconas/farmacologia , Melanoma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Melanoma/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA