Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Melanoma Res ; 22(5): 341-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22588166

RESUMO

Raf/MEK/ERK signaling can inhibit the liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway, thus rendering melanoma cells resistant to energy stress conditions. We evaluated whether pharmacological reactivation of the AMPK function could exert antitumor effects on melanoma cells bearing this pathway constitutively active because of a mutation in NRAS or BRAF genes. Nine melanoma cell lines were treated with the AMPK activators 5-aminoimidazole-4-carboxamide-ribonucleoside (AICAR) and phenformin. The activation of AMPK enzymatic activity, phosphorylation of AMPK and acetyl-CoA carboxylase kinase, in-vitro proliferation, cell cycle, and in-vivo growth of xenografts in nude mice were evaluated. AICAR and phenformin promoted phosphorylation and enzymatic activity of AMPK, as well as phosphorylation of the AMPK downstream target acetyl-CoA carboxylase. Drug treatment of either BRAF-mutant or NRAS-mutant melanomas, at doses not inducing cell death, was accompanied by a dose-dependent decrease in melanoma cell proliferation because of cell cycle arrest in either the G0/G1 or the S phase, associated with an increased expression of the p21 cell cycle inhibitor. Melanomas isolated from subcutaneously implanted mice, 25 days from treatment with AICAR, showed increased staining of the senescence-associated marker ß-galactosidase, high p21 expression, and evidence of necrosis. Altogether, these results indicate that pharmacological activators of AMPK-dependent pathways inhibit the cell growth of melanoma cells with active Raf/MEK/ERK signaling and provide a rationale for further investigation on their use in combination therapies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ativadores de Enzimas/farmacologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imuno-Histoquímica , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Fenformin/farmacologia , Fosforilação , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética
2.
Science ; 336(6083): 918-22, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22517326

RESUMO

Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Salicilatos/metabolismo , Salicilatos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Animais , Aspirina/farmacologia , Sítios de Ligação , Compostos de Bifenilo , Metabolismo dos Carboidratos/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Mutação , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação , Pironas/farmacologia , Ratos , Salicilatos/sangue , Tiofenos/farmacologia
3.
Biochem J ; 426(1): 109-18, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19958286

RESUMO

Activation of AMPK (AMP-activated protein kinase) by phosphorylation at Thr172 is catalysed by at least two distinct upstream kinases, i.e. the tumour suppressor LKB1, and CaMKKbeta (Ca2+/calmodulin-dependent protein kinase kinase-beta). The sequence around Thr172 is highly conserved between the two catalytic subunit isoforms of AMPK and the 12 AMPK-related kinases, and LKB1 has been shown to act upstream of all of them. In the present paper we report that none of the AMPK-related kinases tested could be phosphorylated or activated in intact cells or cell-free assays by CaMKKbeta, although we did observe a slow phosphorylation and activation of BRSK1 (brain-specific kinase 1) by CaMKKalpha. Despite recent reports, we could not find any evidence that the alpha and/or beta subunits of AMPK formed a stable complex with CaMKKbeta. We also showed that increasing AMP concentrations in HeLa cells (which lack LKB1) had no effect on basal AMPK phosphorylation, but enhanced the ability of agents that increase intracellular Ca2+ to activate AMPK. This is consistent with the effect of AMP on phosphorylation of Thr172 being due to inhibition of dephosphorylation, and confirms that the effect of AMP is independent of the upstream kinase utilized.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/fisiologia , AMP Cíclico/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Calcimicina/farmacologia , Cálcio/metabolismo , Linhagem Celular , Células HeLa , Humanos , Imunoprecipitação , Ionóforos/farmacologia , Dados de Sequência Molecular , Fenformin/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Homologia de Sequência de Aminoácidos
4.
Mech Ageing Dev ; 128(11-12): 688-95, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18031790

RESUMO

BACKGROUND: It seems to be clear that hepatic age-related HMG-CoA reductase total activation is connected to a rise of reactive oxygen species (ROS). However, the mechanism by which ROS achieve this effect is unknown. Thus, in this work, we have performed a study of HMG-CoAR by analyzing the enzymes involved in its short-term regulation, namely, AMP-activated kinase (AMPK) and protein phosphatase 2A (PP2A). METHODS AND MATERIALS: In the liver of aged rats and in H(2)O(2)-stimulated HepG2 cells the ROS content, the HMG-CoA reductase activation state, its regulatory enzymes and the p38 downstream pathway involved in reductase deregulation, have been studied. RESULTS AND CONCLUSIONS: Our data show that the hepatic HMG-CoAR is completely dephosphorylated in the liver of old rat being the PP2A increased association with HMG-CoAR the main responsible. On the other hand, the age-related greater association between PP2A and HMG-CoAR results to be due to an increase in ROS that is present during aging and has already been demonstrated to influence HMG-CoAR activation state. Moreover, H(2)O(2)-stimulated HepG2 cell line shows that the ROS effect on the HMG-CoAR dephosphorylation is mediated by the activation of p38/MAPK pathway.


Assuntos
Envelhecimento/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por AMP , Fatores Etários , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/metabolismo , Fígado/enzimologia , Masculino , Complexos Multienzimáticos/metabolismo , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
5.
J Exp Med ; 203(7): 1665-70, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16818670

RESUMO

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKalpha1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca(2+) with Ca(2+) ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca(2+) stimulation of AMPK required the activity of Ca(2+)-calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca(2+) signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it.


Assuntos
Cálcio/fisiologia , Metabolismo Energético , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/enzimologia , Proteínas Quinases Ativadas por AMP , Animais , Benzimidazóis/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Isoquinolinas/farmacologia , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multienzimáticos/antagonistas & inibidores , Naftalimidas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Linfócitos T/metabolismo
6.
Cell Metab ; 2(1): 9-19, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16054095

RESUMO

The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.


Assuntos
Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Benzimidazóis/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Calcimicina/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Ativação Enzimática/efeitos dos fármacos , Fibroblastos , Células HeLa , Humanos , Técnicas In Vitro , Isoquinolinas/farmacologia , Camundongos , Complexos Multienzimáticos/antagonistas & inibidores , Naftalimidas , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Especificidade por Substrato
7.
Obes Res ; 13(12): 2088-94, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16421342

RESUMO

OBJECTIVE: To investigate molecular adaptations that accompany the elevation of intramyocellular lipid (IMCL) content on a high-fat (HF) diet for 1 week. RESEARCH METHODS AND PROCEDURES: Ten subjects consumed a normal-fat (NF) diet for 1 week, followed by an HF diet for another week. After both dietary periods, we determined the IMCL content by proton magnetic resonance spectroscopy in the vastus lateralis muscle and quantified changes in gene expression, protein content, and activity in biopsy samples. We investigated genes involved in carbohydrate and fatty acid handling [lipoprotein lipase, acetyl-coenzyme A carboxylase (ACC) 2, hormone-sensitive lipase, hexokinase II, and glucose transporter 4] and measured protein levels of CD36 and phosphorylated and unphosphorylated ACC2 and the activity of adenosine monophosphate-activated kinase. RESULTS: IMCL content was increased by 54% after the HF period. Lipoprotein lipase mRNA concentration was increased by 33%, whereas ACC2 mRNA concentration tended to be increased after the HF diet. Hexokinase II, glucose transporter 4, and hormone-sensitive lipase mRNA were unchanged after the HF diet. ACC2 and CD36 protein levels, phosphorylation status of ACC2, and adenosine monophosphate-activated kinase activity did not change in response to the HF diet. DISCUSSION: We found that IMCL content in skeletal muscle increased after 1 week of HF feeding, accompanied by molecular adaptations that favor fat storage in muscle rather than oxidation.


Assuntos
Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Adulto , Glicemia/análise , Antígenos CD36/genética , Antígenos CD36/metabolismo , Ácidos Graxos/sangue , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/enzimologia , RNA Mensageiro/metabolismo , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/sangue
8.
J Biol ; 2(4): 28, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14511394

RESUMO

BACKGROUND: The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRAD alpha/beta and MO25 alpha/beta. RESULTS: We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRAD alpha and MO25 alpha, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRAD alpha/beta and MO25 alpha/beta activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRAD alpha or STRAD beta and MO25 alpha or MO25 beta are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. CONCLUSIONS: These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Proteínas de Ligação ao Cálcio , Domínio Catalítico , Linhagem Celular , Linhagem Celular Tumoral , Sistema Livre de Células , Embrião de Mamíferos/citologia , Ativação Enzimática/fisiologia , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Genes Supressores de Tumor , Células HeLa/química , Células HeLa/enzimologia , Células HeLa/metabolismo , Células HeLa/patologia , Humanos , Imunoprecipitação/métodos , Rim/química , Rim/citologia , Rim/embriologia , Rim/enzimologia , Fígado/enzimologia , Camundongos , Complexos Multienzimáticos/fisiologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/fisiologia , Subunidades Proteicas/metabolismo , Ratos , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA