Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 5(3): 280-296, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29560374

RESUMO

Objective: α (CAMK2A) and ß (CAMK2B) isoforms of Calcium/calmodulin-dependent protein kinase II (CaMKII) play a pivotal role in neuronal plasticity and in learning and memory processes in the brain. Here, we explore the possible involvement of α- and ß-CaMKII variants in neurodevelopmental disorders. Methods: Whole-exome sequencing was performed for 976 individuals with intellectual disability, developmental delay, and epilepsy. The effect of CAMK2A and CAMK2B variants on CaMKII structure and firing of neurons was evaluated by computational structural analysis, immunoblotting, and electrophysiological analysis. Results: We identified a total of five de novo CAMK2A and CAMK2B variants in three and two individuals, respectively. Seizures were common to three individuals with CAMK2A variants. Using a minigene splicing assay, we demonstrated that a splice site variant caused skipping of exon 11 leading to an in-frame deletion of the regulatory segment of CaMKII α. By structural analysis, four missense variants are predicted to impair the interaction between the kinase domain and the regulatory segment responsible for the autoinhibition of its kinase activity. The Thr286/Thr287 phosphorylation as a result of release from autoinhibition was increased in three mutants when the mutants were stably expressed in Neuro-2a neuroblastoma cells. Expression of a CaMKII α mutant in primary hippocampal neurons significantly increased A-type K+ currents, which facilitated spike repolarization of single action potentials. Interpretation: Our data highlight the importance of CaMKII α and CaMKII ß and their autoinhibitory regulation in human brain function, and suggest the enhancement of A-type K+ currents as a possible pathophysiological basis.

2.
Biophys J ; 103(4): 669-76, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22947928

RESUMO

Membrane proteins that respond to changes in transmembrane voltage are critical in regulating the function of living cells. The voltage-sensing domains (VSDs) of voltage-gated ion channels are extensively studied to elucidate voltage-sensing mechanisms, and yet many aspects of their structure-function relationship remain elusive. Here, we transplanted homologous amino acid motifs from the tetrameric voltage-activated potassium channel Kv3.1 to the monomeric VSD of Ciona intestinalis voltage-sensitive phosphatase (Ci-VSP) to explore which portions of Kv3.1 subunits depend on the tetrameric structure of Kv channels and which properties of Kv3.1 can be transferred to the monomeric Ci-VSP scaffold. By attaching fluorescent proteins to these chimeric VSDs, we obtained an optical readout to establish membrane trafficking and kinetics of voltage-dependent structural rearrangements. We found that motifs extending from 10 to roughly 100 amino acids can be readily transplanted from Kv3.1 into Ci-VSP to form engineered VSDs that efficiently incorporate into the plasma membrane and sense voltage. Some of the functional features of these engineered VSDs are reminiscent of Kv3.1 channels, indicating that these properties do not require interactions between Kv subunits or between the voltage sensing and the pore domains of Kv channels.


Assuntos
Ciona intestinalis/enzimologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Engenharia de Proteínas/métodos , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Células PC12 , Monoéster Fosfórico Hidrolases/química , Porosidade , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Potássio Shaw/química
3.
J Neurophysiol ; 108(8): 2323-37, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22815406

RESUMO

Population signals from neuronal ensembles in cortex during behavior are commonly measured with EEG, local field potential (LFP), and voltage-sensitive dyes. A genetically encoded voltage indicator would be useful for detection of such signals in specific cell types. Here we describe how this goal can be achieved with Butterfly, a voltage-sensitive fluorescent protein (VSFP) with a subthreshold detection range and enhancements designed for voltage imaging from single neurons to brain in vivo. VSFP-Butterfly showed reliable membrane targeting, maximum response gain around standard neuronal resting membrane potential, fast kinetics for single-cell synaptic responses, and a high signal-to-noise ratio. Butterfly reports excitatory postsynaptic potentials (EPSPs) in cortical neurons, whisker-evoked responses in barrel cortex, 25-Hz gamma oscillations in hippocampal slices, and 2- to 12-Hz slow waves during brain state modulation in vivo. Our findings demonstrate that cell class-specific voltage imaging is practical with VSFP-Butterfly, and expand the genetic toolbox for the detection of neuronal population dynamics.


Assuntos
Proteínas Luminescentes/genética , Neurônios/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Ondas Encefálicas , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores , Transferência Ressonante de Energia de Fluorescência , Hipocampo/citologia , Hipocampo/fisiologia , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Neurônios/classificação , Optogenética , Células PC12 , Monoéster Fosfórico Hidrolases/química , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Proc Natl Acad Sci U S A ; 106(27): 11388-93, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549872

RESUMO

Metabotropic glutamate receptor (mGluR) activation has been extensively studied under steady-state conditions. However, at central synapses, mGluRs are exposed to brief submillisecond glutamate transients and may not reach steady-state. The lack of information on the kinetics of mGluR activation impairs accurate predictions of their operation during synaptic transmission. Here, we report experiments designed to investigate mGluR kinetics in real-time. We inserted either CFP or YFP into the second intracellular loop of mGluR1beta. When these constructs were coexpressed in PC12 cells, glutamate application induced a conformational change that could be monitored, using fluorescence resonance energy transfer (FRET), with an EC(50) of 7.5 microM. The FRET response was mimicked by the agonist DHPG, abolished by the competitive antagonist MCPG, and partially inhibited by mGluR1-selective allosteric modulators. These results suggest that the FRET response reports active conformations of mGluR1 dimers. The solution exchange at the cell membrane was optimized for voltage-clamped cells by recording the current induced by co-application of 30 mM potassium. When glutamate was applied at increasing concentrations up to 2 mM, the activation time course decreased to a minimum of approximately 10 ms, whereas the deactivation time course remained constant (approximately 50 ms). During long-lasting applications, no desensitization was observed. In contrast, we observed a robust sensitization of the FRET response that developed over approximately 400 ms. Activation, deactivation, and sensitization time courses and amplitudes were used to derive a kinetic scheme and rate constants, from which we inferred the EC(50) and frequency dependence of mGluR1 activation under non-steady-state conditions, as occurs during synaptic transmission.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cinética , Modelos Biológicos , Células PC12 , Conformação Proteica , Multimerização Proteica , Ratos
5.
Chem Biol ; 16(12): 1268-77, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064437

RESUMO

Electrical signals generated by nerve cells provide the basis of brain function. Whereas single or small numbers of cells are easily accessible using microelectrode recording techniques, less invasive optogenetic methods with spectral properties optimized for in vivo imaging are required for elucidating the operation mechanisms of neuronal circuits composed of large numbers of neurons originating from heterogeneous populations. To this end, we generated and characterized a series of genetically encoded voltage-sensitive fluorescent proteins by molecular fusion of the voltage-sensing domain of Ci-VSP (Ciona intestinalis voltage sensor-containing phosphatase) to red-shifted fluorescent protein operands. We show how these indicator proteins convert voltage-dependent structural rearrangements into a modulation of fluorescence output and demonstrate their applicability for optical recording of individual or simultaneous electrical signals in cultured hippocampal neurons at single-cell resolution without temporal averaging.


Assuntos
Proteínas Luminescentes/metabolismo , Animais , Linhagem Celular Tumoral , Fenômenos Eletrofisiológicos , Cinética , Proteínas Luminescentes/genética , Microeletrodos , Neurônios/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Vermelha Fluorescente
6.
PLoS One ; 3(6): e2514, 2008 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-18575613

RESUMO

Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.


Assuntos
Engenharia Genética , Canais de Potássio/fisiologia , Animais , Fluorescência , Ativação do Canal Iônico , Células PC12 , Canais de Potássio/química , Conformação Proteica , Ratos
7.
PLoS One ; 2(5): e440, 2007 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-17487283

RESUMO

BACKGROUND: Fluorescent proteins have been used to generate a variety of biosensors to optically monitor biological phenomena in living cells. Among this class of genetically encoded biosensors, reporters for membrane potential have been a particular challenge. The use of presently known voltage sensor proteins is limited by incorrect subcellular localization and small or absent voltage responses in mammalian cells. RESULTS: Here we report on a fluorescent protein voltage sensor with superior targeting to the mammalian plasma membrane and high responsiveness to membrane potential signaling in excitable cells. CONCLUSIONS AND SIGNIFICANCE: This biosensor, which we termed VSFP2.1, is likely to lead to new methods of monitoring electrically active cells with cell type specificity, non-invasively and in large numbers, simultaneously.


Assuntos
Técnicas Biossensoriais , Engenharia de Proteínas , Animais , Sequência de Bases , Primers do DNA , Fluorescência , Células PC12 , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA