Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(7): e14177, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381498

RESUMO

BACKGROUND: The role of insulin resistance in hepatic fibrosis in Metabolic dysfunction-Associated SteatoHepatitis (MASH) remains unclear. Carcinoembryonic Antigen-related Cell Adhesion Molecule1 protein (CEACAM1) promotes insulin clearance to maintain insulin sensitivity and repress de novo lipogenesis, as bolstered by the development of insulin resistance and steatohepatitis in AlbuminCre + Cc1fl/fl mice with liver-specific mouse gene encoding CEACAM1 protein (Ceacam1) deletion. We herein investigated whether these mice also developed hepatic fibrosis and whether hepatic CEACAM1 is reduced in patients with MASH at different fibrosis stages. METHODS: AlbuminCre + Cc1fl/fl mice were fed a regular or a high-fat diet before their insulin metabolism and action were assessed during IPGTT, and their livers excised for histochemical, immunohistochemical and Western blot analysis. Sirius red staining was used to assess fibrosis, and media transfer was employed to examine whether mutant hepatocytes activated hepatic stellate cells (HSCs). Hepatic CEACAM1 protein levels in patients with varying disease stages were assessed by ELISA. RESULTS: Hepatocytic deletion of Ceacam1 caused hyperinsulinemia-driven insulin resistance emanating from reduced hepatic insulin clearance. AlbuminCre + Cc1fl/fl livers showed inflammation, fibrosis and hepatic injury, with more advanced bridging and chicken-wire hepatic fibrosis under high-fat conditions. Media transferred from hepatocytes isolated from mutant mice activated control HSCs, likely owing to their elevated endothelin1 content. Interestingly, hepatic CEACAM1 levels were lower in the livers of patients with MASH and declined gradually with advanced fibrosis stage. CONCLUSIONS: Hepatic CEACAM1 levels declined with progression of MASH in humans. The phenotype of AlbuminCre + Cc1fl/fl mice assigned a key role to CEACAM1 loss from hepatocytes in hepatic fibrosis independently of other liver cells.


Assuntos
Hepatócitos , Resistência à Insulina , Cirrose Hepática , Animais , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Camundongos , Humanos , Resistência à Insulina/fisiologia , Dieta Hiperlipídica , Antígeno Carcinoembrionário/metabolismo , Masculino , Células Estreladas do Fígado/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Hiperinsulinismo/metabolismo , Fígado Gorduroso/metabolismo , Antígenos CD/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Am J Physiol Cell Physiol ; 325(2): C471-C482, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399498

RESUMO

Lipid microdomains, ordered membrane phases containing cholesterol and glycosphingolipids, play an essential role in cancer cell adhesion and ultimately metastasis. Notably, elevated levels of cholesterol-rich lipid microdomains are found in cancer cells relative to their normal counterparts. Therefore, alterations of lipid microdomains through cholesterol modulation could be used as a strategy to prevent cancer metastasis. In this study, methyl-beta-cyclodextrin (MßCD), sphingomyelinase (SMase), and simvastatin (Simva) were used to investigate the effects of cholesterol on the adhesive behaviors of four non-small cell lung cancer (NSCLC) cell lines (H1299, H23, H460, and A549) and a small cell lung cancer (SCLC) cell line (SHP-77) on E-selectin, a vascular endothelial molecule that initiates circulating tumor cell recruitment at metastatic sites. Under hemodynamic flow conditions, the number of adherent NSCLC cells on E-selectin significantly decreased by MßCD and Simva treatments, whereas SMase treatment did not show a significant effect. Significant increases in rolling velocities were detected only for H1299 and H23 cells after MßCD treatment. In contrast, cholesterol depletion did not affect SCLC cell attachment and rolling velocities. Moreover, cholesterol depletion by MßCD and Simva induced CD44 shedding and resulted in an enhanced membrane fluidity in the NSCLC cells, whereas it did not affect the membrane fluidity of the SCLC cells which lacked detectable expression of CD44. Our finding suggests that cholesterol regulates the E-selectin-mediated adhesion of NSCLC cells by redistributing the CD44 glycoprotein and thus modulating the membrane fluidity.NEW & NOTEWORTHY This study investigates the effects of cholesterol on the adhesive behaviors of lung cancer cells in recruitment at metastatic sites. Using cholesterol-modulating compounds, we found that reducing cholesterol decreases the adhesion of non-small cell lung cancer (NSCLC) cells while having no significant effect on small cell lung cancer (SCLC) cells. The study suggests that cholesterol regulates NSCLC cell metastasis by redistributing the adhesion proteins on the cells and modulating cells' membrane fluidity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Selectina E/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Adesão Celular/fisiologia , Lipídeos , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
3.
Metabolism ; 144: 155562, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088122

RESUMO

OBJECTIVES: Hepatocytic CEACAM1 plays a critical role in NASH pathogenesis, as bolstered by the development of insulin resistance, visceral obesity, steatohepatitis and fibrosis in mice with global Ceacam1 (Cc1) deletion. In contrast, VECadCre+Cc1fl/fl mice with endothelial loss of Cc1 manifested insulin sensitivity with no visceral obesity despite elevated NF-κB signaling and increased systemic inflammation. We herein investigated whether VECadCre+Cc1fl/fl male mice develop hepatic fibrosis and whether this is mediated by increased production of endothelin1 (ET1), a transcriptional NF-κB target. METHODS: VECadCre+Et1.Cc1fl/fl mice with combined endothelial loss of Cc1/Et1 genes were generated. Histological and immunohistochemical analyses were conducted on their livers and on liver tissue biopsies from adult patients undergoing bariatric surgery or from patients with NASH diagnosis receiving liver transplant. RESULTS: Hepatic fibrosis and inflammatory infiltration developed in VECadCre+Cc1fl/fl liver parenchyma. This was preceded by increased ET1 production and reversed with combined endothelial loss of Et1. Conditioned media from VECadCre+Cc1fl/fl, but not VECadCre+Et1.Cc1fl/fl primary liver endothelial cells activated wild-type hepatic stellate cells; a process inhibited by bosentan, an ETAR/ETBR dual antagonist. Consistently, immunohistochemical analysis of liver biopsies from patients with NASH showed a decline in endothelial CEACAM1 in parallel with increased plasma endothelin1 levels and progression of hepatic fibrosis stage. CONCLUSIONS: The data demonstrated that endothelial CEACAM1 plays a key role in preventing hepatic fibrogenesis by reducing autocrine endothelin1 production.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Antígeno Carcinoembrionário/genética , Células Endoteliais/patologia , Fígado/patologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , NF-kappa B , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia
4.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457157

RESUMO

(1) Background: Mice with global Ceacam1 deletion developed plaque-like aortic lesions even on C57BL/6J background in the presence of increased endothelial cell permeability and insulin resistance. Loss of endothelial Ceacam1 gene caused endothelial dysfunction and reduced vascular integrity without affecting systemic insulin sensitivity. Because endothelial cell injury precedes atherosclerosis, we herein investigated whether the loss of endothelial Ceacam1 initiates atheroma formation in the absence of insulin resistance. (2) Methods: Endothelial cell-specific Ceacam1 null mice on C57BL/6J.Ldlr-/- background (Ldlr-/-VECadCre+Cc1fl/fl) were fed an atherogenic diet for 3-5 months before metabolic, histopathological, and en-face analysis of aortae were compared to their control littermates. Sirius Red stain was also performed on liver sections to analyze hepatic fibrosis. (3) Results: These mice displayed insulin sensitivity without significant fat deposition on aortic walls despite hypercholesterolemia. They also displayed increased inflammation and fibrosis. Deleting Ceacam1 in endothelial cells caused hyperactivation of VEGFR2/Shc/NF-κB pathway with resultant transcriptional induction of NF-κB targets. These include IL-6 that activates STAT3 inflammatory pathways, in addition to endothelin-1 and PDGF-B profibrogenic effectors. It also induced the association between SHP2 phosphatase and VEGFR2, downregulating the Akt/eNOS pathway and reducing nitric oxide production, a characteristic feature of endothelial dysfunction. Similarly, hepatic inflammation and fibrosis developed in Ldlr-/-VECadCre+Cc1fl/fl mice without an increase in hepatic steatosis. (4) Conclusions: Deleting endothelial cell Ceacam1 caused hepatic and aortic inflammation and fibrosis with increased endothelial dysfunction and oxidative stress in the presence of hypercholesterolemia. However, this did not progress into frank atheroma formation. Because these mice remained insulin sensitive, the study provides an in vivo demonstration that insulin resistance plays a critical role in the pathogenesis of frank atherosclerosis.


Assuntos
Aterosclerose , Hipercolesterolemia , Resistência à Insulina , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Antígeno Carcinoembrionário , Células Endoteliais/metabolismo , Fibrose , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Insulina Regular Humana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948019

RESUMO

The NAD-dependent deacetylase SIRT1 improves ß cell function. Accordingly, nicotinamide mononucleotide (NMN), the product of the rate-limiting step in NAD synthesis, prevents ß cell dysfunction and glucose intolerance in mice fed a high-fat diet. The current study was performed to assess the effects of NMN on ß cell dysfunction and glucose intolerance that are caused specifically by increased circulating free fatty acids (FFAs). NMN was intravenously infused, with or without oleate, in C57BL/6J mice over a 48-h-period to elevate intracellular NAD levels and consequently increase SIRT1 activity. Administration of NMN in the context of elevated plasma FFA levels considerably improved glucose tolerance. This was due not only to partial protection from FFA-induced ß cell dysfunction but also, unexpectedly, to a significant decrease in insulin clearance. However, in conditions of normal FFA levels, NMN impaired glucose tolerance due to decreased ß cell function. The presence of this dual action of NMN suggests caution in its proposed therapeutic use in humans.


Assuntos
Ácidos Graxos não Esterificados/sangue , Intolerância à Glucose/tratamento farmacológico , Glucose/efeitos adversos , Insulina/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Ácido Oleico/efeitos adversos , Animais , Intolerância à Glucose/sangue , Intolerância à Glucose/induzido quimicamente , Células Hep G2 , Humanos , Infusões Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Sirtuína 1/metabolismo , Regulação para Cima
6.
Cells ; 10(8)2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34440862

RESUMO

CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Células Endoteliais/metabolismo , Resistência à Insulina , Adipócitos/metabolismo , Animais , Antígeno Carcinoembrionário/genética , Endotélio Vascular/metabolismo , Gorduras/metabolismo , Glucose/metabolismo , Inflamação , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais
7.
Metabolism ; 121: 154801, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34058224

RESUMO

OBJECTIVE: NAFLD is a complex disease marked by cellular abnormalities leading to NASH. NAFLD patients manifest low hepatic levels of CEACAM1, a promoter of insulin clearance. Consistently, Cc1-/- null mice displayed spontaneous hyperinsulinemia/insulin resistance and steatohepatitis. Liver-specific reconstitution of Ceacam1 reversed these metabolic anomalies in 8-month-old Cc1-/-xliver+ mice fed a regular chow diet. The current study examined whether it would also reverse progressive hepatic fibrosis in mice fed a high-fat (HF) diet. METHODS: 3-Month-old mice were fed a high-fat diet for 3-5 months, and metabolic and histopathological analysis were conducted to evaluate their NASH phenotype. RESULTS: Reconstituting CEACAM1 to Cc1-/- livers curbed diet-induced liver dysfunction and NASH, including macrovesicular steatosis, lobular inflammation, apoptosis, oxidative stress, and chicken-wire bridging fibrosis. Persistence of hepatic fibrosis in HF-fed Cc1-/- treated with nicotinic acid demonstrated a limited role for lipolysis and adipokine release in hepatic fibrosis caused by Ceacam1 deletion. CONCLUSIONS: Restored metabolic and histopathological phenotype of HF-fed Cc1-/-xliver+xliver+ assigned a critical role for hepatic CEACAM1 in preventing NAFLD/NASH including progressive hepatic fibrosis.


Assuntos
Antígeno Carcinoembrionário/fisiologia , Cirrose Hepática/genética , Animais , Antígeno Carcinoembrionário/genética , Dieta Hiperlipídica , Insulina/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Hepatol Commun ; 4(11): 1591-1609, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33163831

RESUMO

Patients with nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) commonly develop atherosclerosis through a mechanism that is not well delineated. These diseases are associated with steatosis, inflammation, oxidative stress, and fibrosis. The role of insulin resistance in their pathogenesis remains controversial. Albumin (Alb)Cre+ Cc1flox ( fl ) /fl mice with the liver-specific null deletion of the carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1; alias Cc1) gene display hyperinsulinemia resulting from impaired insulin clearance followed by hepatic insulin resistance, elevated de novo lipogenesis, and ultimately visceral obesity and systemic insulin resistance. We therefore tested whether this mutation causes NAFLD/NASH and atherosclerosis. To this end, mice were propagated on a low-density lipoprotein receptor (Ldlr) -/- background and at 4 months of age were fed a high-cholesterol diet for 2 months. We then assessed the biochemical and histopathologic changes in liver and aortae. Ldlr-/-AlbCre+Cc1fl/fl mice developed chronic hyperinsulinemia with proatherogenic hypercholesterolemia, a robust proinflammatory state associated with visceral obesity, elevated oxidative stress (reduced NO production), and an increase in plasma and tissue endothelin-1 levels. In parallel, they developed NASH (steatohepatitis, apoptosis, and fibrosis) and atherosclerotic plaque lesions. Mechanistically, hyperinsulinemia caused down-regulation of the insulin receptor followed by inactivation of the insulin receptor substrate 1-protein kinase B-endothelial NO synthase pathway in aortae, lowering the NO level. This also limited CEACAM1 phosphorylation and its sequestration of Shc-transforming protein (Shc), activating the Shc-mitogen-activated protein kinase-nuclear factor kappa B pathway and stimulating endothelin-1 production. Thus, in the presence of proatherogenic dyslipidemia, hyperinsulinemia and hepatic insulin resistance driven by liver-specific deletion of Ceacam1 caused metabolic and vascular alterations reminiscent of NASH and atherosclerosis. Conclusion: Altered CEACAM1-dependent hepatic insulin clearance pathways constitute a molecular link between NASH and atherosclerosis.

9.
Metabolism ; 107: 154215, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32209360

RESUMO

OBJECTIVE: PTEN haploinsufficiency plays an important role in prostate cancer development in men. However, monoallelic deletion of Pten gene failed to induce high prostate intraepithelial neoplasia (PIN) until Pten+/- mice aged or fed a high-calorie diet. Because CEACAM1, a cell adhesion molecule with a potential tumor suppression activity, is induced in Pten+/- prostates, the study aimed at examining whether the rise of CEACAM1 limited neoplastic progression in Pten+/- prostates. METHODS: Pten+/- were crossbred with Cc1-/- mice harboring a null deletion of Ceacam1 gene to produce Pten+/-/Cc1-/- double mutants. Prostates from 7-month old male mice were analyzed histologically and biochemically for PIN progression. RESULTS: Deleting Ceacam1 in Pten+/- mice caused an early development of high-grade PIN in parallel to hyperactivation of PI3 kinase/Akt and Ras/MAP kinase pathways, with an increase in cell proliferation, epithelial-to-mesenchymal transition, angiogenesis and inflammation relative to Pten+/- and Cc1-/- individual mutants. It also caused a remarkable increase in lipogenesis in prostate despite maintaining insulin sensitivity. Concomitant Ceacam1 deletion with Pten+/- activated the IL-6/STAT3 signaling pathways to suppress Irf-8 transcription that in turn, led to a decrease in the expression level of promyelocytic leukemia gene, a well characterized tumor suppressor in prostate. CONCLUSIONS: Ceacam1 deletion accelerated high-grade prostate intraepithelial neoplasia in Pten haploinsufficient mice while preserving insulin sensitivity. This demonstrated that the combined loss of Ceacam1 and Pten advanced prostate cancer by increasing lipogenesis and modifying the STAT3-dependent inflammatory microenvironment of prostate.


Assuntos
Antígeno Carcinoembrionário/genética , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Animais , Progressão da Doença , Haploinsuficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Proteína Oncogênica v-akt/genética , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
10.
Metabolism ; 93: 33-43, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30664851

RESUMO

BACKGROUND: CEACAM1 regulates insulin sensitivity by promoting insulin clearance. Accordingly, global C57BL/6J.Cc1-/- null mice display hyperinsulinemia due to impaired insulin clearance at 2 months of age, followed by insulin resistance, steatohepatitis, visceral obesity and leptin resistance at 6 months. The study aimed at investigating the primary role of hepatic CEACAM1 in insulin and lipid homeostasis independently of its metabolic effect in extra-hepatic tissues. METHODS: Liver-specific C57BL/6J.AlbCre+Cc1fl/fl mice were generated and their metabolic phenotype was characterized by comparison to that of their littermate controls at 2-9 months of age, using hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry. The effect of hyperphagia on insulin resistance was assessed by pair-feeding experiments. RESULTS: Liver-specific AlbCre+Cc1fl/fl mutants exhibited impaired insulin clearance and hyperinsulinemia at 2 months, followed by hepatic insulin resistance (assessed by hyperinsulinemic-euglycemic clamp analysis) and steatohepatitis at ~ 7 months of age, at which point visceral obesity and hyperphagia developed, in parallel to hyperleptinemia and blunted hypothalamic STAT3 phosphorylation in response to an intraperitoneal injection of leptin. Hyperinsulinemia caused hypothalamic insulin resistance, followed by increased fatty acid synthase activity, which together with defective hypothalamic leptin signaling contributed to hyperphagia and reduced physical activity. Pair-feeding experiment showed that hyperphagia caused systemic insulin resistance, including blunted insulin signaling in white adipose tissue and lipolysis, at 8-9 months of age. CONCLUSION: AlbCre+Cc1fl/fl mutants provide an in vivo demonstration of the key role of impaired hepatic insulin clearance and hyperinsulinemia in the pathogenesis of secondary hepatic insulin resistance independently of lipolysis. They also reveal an important role for the liver-hypothalamic axis in the regulation of energy balance and subsequently, systemic insulin sensitivity.


Assuntos
Antígeno Carcinoembrionário/genética , Hiperinsulinismo/complicações , Resistência à Insulina , Fígado/metabolismo , Animais , Técnica Clamp de Glucose , Hiperfagia/complicações , Hipotálamo/metabolismo , Lipólise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Metabolism ; 88: 1-11, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098324

RESUMO

The role of insulin-degrading enzyme (IDE), a metalloprotease with high affinity for insulin, in insulin clearance remains poorly understood. OBJECTIVE: This study aimed to clarify whether IDE is a major mediator of insulin clearance, and to define its role in the etiology of hepatic insulin resistance. METHODS: We generated mice with liver-specific deletion of Ide (L-IDE-KO) and assessed insulin clearance and action. RESULTS: L-IDE-KO mice exhibited higher (~20%) fasting and non-fasting plasma glucose levels, glucose intolerance and insulin resistance. This phenotype was associated with ~30% lower plasma membrane insulin receptor levels in liver, as well as ~55% reduction in insulin-stimulated phosphorylation of the insulin receptor, and its downstream signaling molecules, AKT1 and AKT2 (reduced by ~40%). In addition, FoxO1 was aberrantly distributed in cellular nuclei, in parallel with up-regulation of the gluconeogenic genes Pck1 and G6pc. Surprisingly, L-IDE-KO mice showed similar plasma insulin levels and hepatic insulin clearance as control mice, despite reduced phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1, which upon its insulin-stimulated phosphorylation, promotes receptor-mediated insulin uptake to be degraded. CONCLUSION: IDE is not a rate-limiting regulator of plasma insulin levels in vivo.


Assuntos
Teste de Tolerância a Glucose , Resistência à Insulina , Insulina/sangue , Insulisina/metabolismo , Fígado/enzimologia , Fígado/fisiopatologia , Animais , Gluconeogênese/genética , Células Secretoras de Insulina/patologia , Insulisina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
12.
Mol Metab ; 9: 98-113, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396368

RESUMO

OBJECTIVE: Mice with global null mutation of Ceacam1 (Cc1-/-), display impairment of insulin clearance that causes hyperinsulinemia followed by insulin resistance, elevated hepatic de novo lipogenesis, and visceral obesity. In addition, they manifest abnormal vascular permeability and elevated blood pressure. Liver-specific rescuing of Ceacam1 reversed all of the metabolic abnormalities in Cc1-/-liver+ mice. The current study examined whether Cc1-/- male mice develop endothelial and cardiac dysfunction and whether this relates to the metabolic abnormalities caused by defective insulin extraction. METHODS AND RESULTS: Myography studies showed reduction of agonist-stimulated nitric oxide production in resistance arterioles in Cc1-/-, but not Cc1-/-liver+ mice. Liver-based rescuing of CEACAM1 also attenuated the abnormal endothelial adhesiveness to circulating leukocytes in parallel to reducing plasma endothelin-1 and recovering plasma nitric oxide levels. Echocardiography studies revealed increased septal wall thickness, cardiac hypertrophy and reduced cardiac performance in Cc1-/-, but not Cc1-/-xliver+ mice. Insulin signaling experiments indicated compromised IRS1/Akt/eNOS pathway leading to lower nitric oxide level, and activated Shc/MAPK pathway leading to more endothelin-1 production in the aortae and hearts of Cc1-/-, but not Cc1-/-xliver+ mice. The increase in the ratio of endothelin-1 receptor A/B indicated an imbalance in the vasomotor activity of Cc1-/- mice, which was normalized in Cc1-/-xliver+ mice. CONCLUSIONS: The data underscore a critical role for impaired CEACAM1-dependent hepatic insulin clearance pathways and resulting hyperinsulinemia and lipid accumulation in aortae and heart in regulating the cardiovascular function.


Assuntos
Antígeno Carcinoembrionário/genética , Cardiomiopatias/genética , Endotélio Vascular/metabolismo , Hiperinsulinismo/genética , Fígado/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Antígeno Carcinoembrionário/metabolismo , Cardiomiopatias/metabolismo , Células Cultivadas , Endotelinas/metabolismo , Deleção de Genes , Hiperinsulinismo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Hepatol Commun ; 2(1): 35-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29404511

RESUMO

Exenatide, a glucagon-like peptide-1 receptor agonist, induces insulin secretion. Its role in insulin clearance has not been adequately examined. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance to maintain insulin sensitivity. Feeding C57BL/6J mice a high-fat diet down-regulates hepatic Ceacam1 transcription to cause hyperinsulinemia, insulin resistance, and hepatic steatosis, as in Ceacam1 null mice (Cc1-/- ). Thus, we tested whether exenatide regulates Ceacam1 expression in high-fat diet-fed mice and whether this contributes to its insulin sensitizing effect. Exenatide (100 nM) induced the transcriptional activity of wild-type Ceacam1 promoter but not the constructs harboring block mutations of peroxisome proliferator-activated receptor response element and retinoid X receptor alpha, individually or collectively, in HepG2 human hepatoma cells. Chromatin immunoprecipitation analysis demonstrated binding of peroxisome proliferator-activated receptor gamma to Ceacam1 promoter in response to rosiglitazone and exenatide. Consistently, exenatide induced Ceacam1 messenger RNA expression within 12 hours in the absence but not in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9-39. Exenatide (20 ng/g body weight once daily intraperitoneal injection in the last 30 days of feeding) restored hepatic Ceacam1 expression and insulin clearance to curb diet-induced metabolic abnormalities and steatohepatitis in wild-type but not Cc1-/- mice fed a high-fat diet for 2 months. Conclusion: Exenatide promotes insulin clearance in parallel with insulin secretion to prevent chronic hyperinsulinemia and the resulting hepatic steatosis, and this contributes to its insulin sensitizing effect. Our data further highlight the relevance of physiologic insulin metabolism in maintaining insulin sensitivity and normal lipid metabolism. (Hepatology Communications 2018;2:35-47).

14.
Diabetologia ; 60(12): 2463-2474, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28913658

RESUMO

AIMS/HYPOTHESIS: The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Mice with global null mutation (Cc1 -/-) or with liver-specific inactivation (L-SACC1) of Cc1 (also known as Ceacam1) gene display hyperinsulinaemia resulting from impaired insulin clearance, insulin resistance, steatohepatitis and obesity. Because increased lipolysis contributes to the metabolic phenotype caused by transgenic inactivation of CEACAM1 in the liver, we aimed to further investigate the primary role of hepatic CEACAM1-dependent insulin clearance in insulin and lipid homeostasis. To this end, we examined whether transgenic reconstitution of CEACAM1 in the liver of global Cc1 -/- mutant mice reverses their abnormal metabolic phenotype. METHODS: Insulin response was assessed by hyperinsulinaemic-euglycaemic clamp analysis and energy balance was analysed by indirect calorimetry. Mice were overnight-fasted and refed for 7 h to assess fatty acid synthase activity in the liver and the hypothalamus in response to insulin release during refeeding. RESULTS: Liver-based rescuing of CEACAM1 restored insulin clearance, plasma insulin level, insulin sensitivity and steatohepatitis caused by global deletion of Cc1. It also reversed the gain in body weight and total fat mass observed with Cc1 deletion, in parallel to normalising energy balance. Mechanistically, reversal of hyperphagia appeared to result from reducing fatty acid synthase activity and restoring insulin signalling in the hypothalamus. CONCLUSIONS/INTERPRETATION: Despite the potential confounding effects of deleting Cc1 from extrahepatic tissues, liver-based rescuing of CEACAM1 resulted in full normalisation of the metabolic phenotype, underscoring the key role that CEACAM1-dependent hepatic insulin clearance pathways play in regulating systemic insulin sensitivity, lipid homeostasis and energy balance.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Fígado Gorduroso/metabolismo , Hiperinsulinismo/metabolismo , Fígado/metabolismo , Animais , Antígeno Carcinoembrionário/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Fígado Gorduroso/genética , Hiperinsulinismo/genética , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Lipólise/genética , Lipólise/fisiologia , Masculino , Camundongos
15.
Diabetologia ; 60(9): 1751-1760, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28567513

RESUMO

AIMS/HYPOTHESIS: Cc2 -/- mice lacking the gene encoding the carcinoembryonic-antigen-related cell adhesion molecule 2 (Cc2 [also known as Ceacam2]) exhibit hyperphagia that leads to obesity and insulin resistance. This starts at 2 months of age in female mice. Male mutants maintain normal body weight and insulin sensitivity until the last age previously examined (7-8 months), owing to increased sympathetic tone to white adipose tissue and energy expenditure. The current study investigates whether insulin resistance develops in mutant male mice at a later age and whether this is accompanied by changes in insulin homeostasis. METHODS: Insulin response was assessed by insulin and glucose tolerance tests. Energy balance was analysed by indirect calorimetry. RESULTS: Male Cc2 -/- mice developed overt metabolic abnormalities at about 9 months of age. These include elevated global fat mass, hyperinsulinaemia and insulin resistance (as determined by glucose and insulin intolerance, fed hyperglycaemia and decreased insulin signalling pathways). Pair-feeding experiments showed that insulin resistance resulted from hyperphagia. Indirect calorimetry demonstrated that older mutant male mice had compromised energy expenditure. Despite increased insulin secretion caused by Cc2 deletion, chronic hyperinsulinaemia did not develop in mutant male mice until about 9 months of age, at which point insulin clearance began to decline substantially. This was probably mediated by a marked decrease in hepatic CEACAM1 expression. CONCLUSIONS/INTERPRETATION: The data demonstrate that at about 9 months of age, Cc2 -/- male mice develop a reduction in energy expenditure and energy imbalance which, combined with a progressive decrease in CEACAM1-dependent hepatic insulin clearance, causes chronic hyperinsulinaemia and sustained age-dependent insulin resistance. This represents a novel mechanistic underpinning of age-related impairment of hepatic insulin clearance.


Assuntos
Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Animais , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Mutantes
16.
Artigo em Inglês | MEDLINE | ID: mdl-28396653

RESUMO

Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.

17.
Artigo em Inglês | MEDLINE | ID: mdl-28184213

RESUMO

The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.

18.
J Diabetes Treat ; 2017(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29431170

RESUMO

The Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) promotes insulin sensitivity by inducing insulin clearance and reducing de novo lipogenesis in the liver. Consistently, Cc1-/- mice with null deletion of Ceacam1 gene exhibit hyperinsulinemia and insulin resistance, in addition to steatohepatitis. They also exhibit early pericellular fibrosis. Redelivering Ceacam1 to the liver reverses the altered metabolism and histopathology of Cc1-/- mice. Exenatide, a long-acting glucagon-like peptide-1 receptor agonist, induces Ceacam1 transcription and consequently, reverses impaired insulin clearance and insulin resistance caused by high-fat intake. Additionally, it reverses fat accumulation in the liver. The current studies show that exenatide also restored the activities of alanine transaminase and aspartate aminotransferase, and reversed the inflammatory and oxidative stress response to high-fat diet in wild-type, but not in Cc1-/- mice. Exenatide also prevented diet-induced activation of the TGFß/Smad2/Smad3 pro-fibrogenic pathways, and normalized the mRNA levels of pro-fibrogenic genes in wild-type, but not in Cc1-/- mice. Together, the data demonstrate that exenatide prevented diet-induced pro-fibrogenesis and hepatocellular injury in a CEACAM1-dependent mechanism.

19.
J Biol Chem ; 291(15): 8121-9, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26846848

RESUMO

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5'-deletion and block substitution analyses reveal that the Pparα response element between nucleotides -557 and -543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα toCeacam1promoter in liver lysates ofPparα(+/+), but notPparα(-/-)mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition.


Assuntos
Antígenos CD/genética , Moléculas de Adesão Celular/genética , Jejum , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , PPAR alfa/metabolismo , Animais , Antígenos CD/análise , Antígenos CD/metabolismo , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Deleção de Genes , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Ratos
20.
Mol Metab ; 4(3): 186-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25737954

RESUMO

OBJECTIVE: Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. METHODS: 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. RESULTS: In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. CONCLUSION: High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA