Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Cardiol ; 46(10): 1210-1219, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37526378

RESUMO

BACKGROUND: Although electrophysiological (EP) centers have institutional standards, evidence on management of cardiac tamponade is lacking. AIM AND METHODS: A physician-based survey was conducted by sending out questionnaires to all hospitals in Germany performing EP procedures. To evaluate the infrastructure of EP centers and the impact of center volume and onsite cardiac surgery on the management of cardiac tamponade, the results of the survey were analyzed for low-volume (0-250 procedures per year), mid-volume (250-500 procedures), and high-volume (>500 procedures) centers, as well as for centers with and without onsite cardiac surgery. RESULTS: A total of 341 centers were identified and 189/341 (55%) returned data sets were analyzed. Most types of EP procedures are performed across all kinds of centers. Ablation of ventricular tachycardia (VT) is concentrated in higher volume centers and in centers with onsite cardiac surgery. None of the participating low-volume centers and only 13% of centers without onsite cardiac surgery responded to performing epicardial VT ablation. Irrespective of center volume and onsite cardiac surgery, neither body mass index nor age was reported to be an exclusion criterion for ablation procedures. Higher volume centers and centers with onsite cardiac surgery more often have dedicated EP laboratories and EP-nursing teams. Also, differences regarding periprocedural safety precautions and management of cardiac tamponade were found for low-, mid-, and high-volume centers, as well as for centers with and without onsite cardiac surgery. CONCLUSION: While center volume and onsite cardiac surgery do not impact patient selection, there are differences in ablation spectrum, infrastructure, periprocedural safety precautions, and treatment of tamponade.


Assuntos
Tamponamento Cardíaco , Ablação por Cateter , Taquicardia Ventricular , Humanos , Tamponamento Cardíaco/etiologia , Tamponamento Cardíaco/cirurgia , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/terapia , Taquicardia Ventricular/cirurgia , Alemanha/epidemiologia , Ablação por Cateter/métodos , Eletrofisiologia , Resultado do Tratamento
2.
Front Immunol ; 14: 1168455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063865

RESUMO

Even though cancer patients are generally considered more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the mechanisms driving their predisposition to severe forms of coronavirus disease 2019 (COVID-19) have not yet been deciphered. Since metabolic disorders are associated with homeostatic frailty, which increases the risk of infection and cancer, we asked whether we could identify immunometabolic pathways intersecting with cancer and SARS-CoV-2 infection. Thanks to a combined flow cytometry and multiomics approach, here we show that the immunometabolic traits of COVID-19 cancer patients encompass alterations in the frequency and activation status of circulating myeloid and lymphoid subsets, and that these changes are associated with i) depletion of tryptophan and its related neuromediator tryptamine, ii) accumulation of immunosuppressive tryptophan metabolites (i.e., kynurenines), and iii) low nicotinamide adenine dinucleotide (NAD+) availability. This metabolic imbalance is accompanied by altered expression of inflammatory cytokines in peripheral blood mononuclear cells (PBMCs), with a distinctive downregulation of IL-6 and upregulation of IFNγ mRNA expression levels. Altogether, our findings indicate that cancer not only attenuates the inflammatory state in COVID-19 patients but also contributes to weakening their precarious metabolic state by interfering with NAD+-dependent immune homeostasis.


Assuntos
COVID-19 , Neoplasias , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Leucócitos Mononucleares , NAD/metabolismo , Triptofano/metabolismo , Neoplasias/metabolismo
4.
Nat Cell Biol ; 24(5): 659-671, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550611

RESUMO

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.


Assuntos
Proteínas do Tecido Nervoso , Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Cicatriz/patologia , Cicatriz/prevenção & controle , Fibrose , Humanos , Miocárdio/patologia , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes/patologia , Receptores Imunológicos , Suínos
5.
Circulation ; 144(17): 1409-1428, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34694888

RESUMO

BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico/genética , Organogênese/genética , Heterogeneidade Genética , Humanos
6.
J Healthc Eng ; 2021: 5556207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336157

RESUMO

The efficacy of hydroxychloroquine (HCQ) in treating SARS-CoV-2 infection is harshly debated, with observational and experimental studies reporting contrasting results. To clarify the role of HCQ in Covid-19 patients, we carried out a retrospective observational study of 4,396 unselected patients hospitalized for Covid-19 in Italy (February-May 2020). Patients' characteristics were collected at entry, including age, sex, obesity, smoking status, blood parameters, history of diabetes, cancer, cardiovascular and chronic pulmonary diseases, and medications in use. These were used to identify subtypes of patients with similar characteristics through hierarchical clustering based on Gower distance. Using multivariable Cox regressions, these clusters were then tested for association with mortality and modification of effect by treatment with HCQ. We identified two clusters, one of 3,913 younger patients with lower circulating inflammation levels and better renal function, and one of 483 generally older and more comorbid subjects, more prevalently men and smokers. The latter group was at increased death risk adjusted by HCQ (HR[CI95%] = 3.80[3.08-4.67]), while HCQ showed an independent inverse association (0.51[0.43-0.61]), as well as a significant influence of cluster∗HCQ interaction (p < 0.001). This was driven by a differential association of HCQ with mortality between the high (0.89[0.65-1.22]) and the low risk cluster (0.46[0.39-0.54]). These effects survived adjustments for additional medications in use and were concordant with associations with disease severity and outcome. These findings suggest a particularly beneficial effect of HCQ within low risk Covid-19 patients and may contribute to clarifying the current controversy on HCQ efficacy in Covid-19 treatment.


Assuntos
Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/mortalidade , Mortalidade Hospitalar , Hidroxicloroquina/efeitos adversos , Hidroxicloroquina/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , COVID-19/fisiopatologia , Análise por Conglomerados , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2/efeitos dos fármacos , Índice de Gravidade de Doença , Resultado do Tratamento
7.
J Clin Med ; 10(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919877

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease that presents with cardiac hypertrophy. HCM phenocopies are clinical conditions that are phenotypically undistinguishable from HCM, but with a different underlying etiology. Cardiac tumors are rare entities that can sometimes mimic HCM in their echocardiographic appearance, thus representing an example of HCM phenocopy. At present, only case reports of tumoral HCM phenocopies can be found in literature. In this systematic review, we analyzed all the published cases in which a cardiac tumor mimicked HCM to the point of misleading the diagnosis, providing a structured overview of the currently available evidence on this topic.

8.
Nat Immunol ; 22(1): 19-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208929

RESUMO

Long pentraxin 3 (PTX3) is an essential component of humoral innate immunity, involved in resistance to selected pathogens and in the regulation of inflammation1-3. The present study was designed to assess the presence and significance of PTX3 in Coronavirus Disease 2019 (COVID-19)4-7. RNA-sequencing analysis of peripheral blood mononuclear cells, single-cell bioinformatics analysis and immunohistochemistry of lung autopsy samples revealed that myelomonocytic cells and endothelial cells express high levels of PTX3 in patients with COVID-19. Increased plasma concentrations of PTX3 were detected in 96 patients with COVID-19. PTX3 emerged as a strong independent predictor of 28-d mortality in multivariable analysis, better than conventional markers of inflammation, in hospitalized patients with COVID-19. The prognostic significance of PTX3 abundance for mortality was confirmed in a second independent cohort (54 patients). Thus, circulating and lung myelomonocytic cells and endothelial cells are a major source of PTX3, and PTX3 plasma concentration can serve as an independent strong prognostic indicator of short-term mortality in COVID-19.


Assuntos
Proteína C-Reativa/genética , COVID-19/genética , Perfilação da Expressão Gênica/métodos , Macrófagos/metabolismo , SARS-CoV-2/isolamento & purificação , Componente Amiloide P Sérico/genética , Células A549 , Adulto , Proteína C-Reativa/metabolismo , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular Tumoral , Células Cultivadas , Estudos de Coortes , Células Endoteliais/metabolismo , Epidemias , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Prognóstico , SARS-CoV-2/fisiologia , Componente Amiloide P Sérico/metabolismo
9.
Nutr Metab Cardiovasc Dis ; 30(11): 1899-1913, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32912793

RESUMO

BACKGROUND AND AIMS: There is poor knowledge on characteristics, comorbidities and laboratory measures associated with risk for adverse outcomes and in-hospital mortality in European Countries. We aimed at identifying baseline characteristics predisposing COVID-19 patients to in-hospital death. METHODS AND RESULTS: Retrospective observational study on 3894 patients with SARS-CoV-2 infection hospitalized from February 19th to May 23rd, 2020 and recruited in 30 clinical centres distributed throughout Italy. Machine learning (random forest)-based and Cox survival analysis. 61.7% of participants were men (median age 67 years), followed up for a median of 13 days. In-hospital mortality exhibited a geographical gradient, Northern Italian regions featuring more than twofold higher death rates as compared to Central/Southern areas (15.6% vs 6.4%, respectively). Machine learning analysis revealed that the most important features in death classification were impaired renal function, elevated C reactive protein and advanced age. These findings were confirmed by multivariable Cox survival analysis (hazard ratio (HR): 8.2; 95% confidence interval (CI) 4.6-14.7 for age ≥85 vs 18-44 y); HR = 4.7; 2.9-7.7 for estimated glomerular filtration rate levels <15 vs ≥ 90 mL/min/1.73 m2; HR = 2.3; 1.5-3.6 for C-reactive protein levels ≥10 vs ≤ 3 mg/L). No relation was found with obesity, tobacco use, cardiovascular disease and related-comorbidities. The associations between these variables and mortality were substantially homogenous across all sub-groups analyses. CONCLUSIONS: Impaired renal function, elevated C-reactive protein and advanced age were major predictors of in-hospital death in a large cohort of unselected patients with COVID-19, admitted to 30 different clinical centres all over Italy.


Assuntos
Betacoronavirus , Doenças Cardiovasculares/etiologia , Infecções por Coronavirus/mortalidade , Mortalidade Hospitalar , Aprendizado de Máquina , Pneumonia Viral/mortalidade , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/análise , COVID-19 , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Análise de Sobrevida , Adulto Jovem
10.
Curr Cardiol Rep ; 19(3): 23, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28220464

RESUMO

PURPOSE OF REVIEW: The promises of human-induced pluripotent stem cells (hiPSCs) for modeling arrhythmogenic disease, but also for drug discovery and toxicity tests, are straightforward and exciting. However, the full potential of this new technology has not been fully realized yet. The purpose of this review is to provide an overview of the state-of-the-art research in arrhythmogenic disease modeling and drug discovery and an outlook of what can be expected from the second decade of hiPSC-based arrhythmia research. RECENT FINDINGS: Remarkable advances in genomic discoveries, stem cell biology, and genome editing via sequence-specific nucleases have been made in recent years. Together, these breakthroughs have allowed us to progress from studying monogenetic diseases with a direct genotype-phenotype relationship to genetically more complex diseases such as arrhythmogenic right ventricular dysplasia and atrial fibrillation. In addition, newly developed tools for arrhythmia research such as optical action potential recordings have facilitated the use of hiPSCs for drug and toxicity screening and their eventual clinical use. These advances in in vitro assay development, genome editing, and stem cell biology will soon enable the implementation of hiPSC-based findings into clinical practice and provide us with unprecedented insights into mechanisms of complex arrhythmogenic diseases.


Assuntos
Arritmias Cardíacas/genética , Descoberta de Drogas , Células-Tronco Pluripotentes Induzidas , Arritmias Cardíacas/fisiopatologia , Displasia Arritmogênica Ventricular Direita/genética , Diferenciação Celular , Técnicas de Reprogramação Celular , Edição de Genes , Humanos , Miócitos Cardíacos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA