Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Elife ; 132024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007235

RESUMO

The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.


Assuntos
Ácido Glutâmico , Receptores para Leptina , Maturidade Sexual , Transmissão Sináptica , Animais , Feminino , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Camundongos , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Reprodução , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Hormônio Luteinizante/sangue , Hormônio Luteinizante/metabolismo
2.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790549

RESUMO

The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determine the role of glutamatergic signaling from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces LH release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LepRb-Cre mice. We collected blood sequentially before and for 1h after iv. clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of cFos immunoreactive neurons in the PMv. Next, females with deletion of Vglut2 in LepRb neurons (LepR∆VGlut2) showed delayed age of puberty, disrupted estrous cycles, increased GnRH concentration in the axon terminals and disrupted LH responses, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LepRloxTB) with concomitant deletion of Vglut2 (Vglut2-floxed) mice. Rescue of Lepr and deletion of Vglut2 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LepRloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation and became pregnant, while LepRloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic signaling from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

3.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36683455

RESUMO

Androgens are steroid hormones crucial for sexual differentiation of the brain and reproductive function. In excess, however, androgens may decrease fertility as observed in polycystic ovary syndrome, a common endocrine disorder characterized by oligo/anovulation and/or polycystic ovaries. Hyperandrogenism may also disrupt energy homeostasis, inducing higher central adiposity, insulin resistance, and glucose intolerance, which may exacerbate reproductive dysfunction. Androgens bind to androgen receptors (ARs), which are expressed in many reproductive and metabolic tissues, including brain sites that regulate the hypothalamo-pituitary-gonadal axis and energy homeostasis. The neuronal populations affected by androgen excess, however, have not been defined. We and others have shown that, in mice, AR is highly expressed in leptin receptor (LepRb) neurons, particularly in the arcuate (ARH) and the ventral premammillary nuclei (PMv). Here, we assessed if LepRb neurons, which are critical in the central regulation of energy homeostasis and exert permissive actions on puberty and fertility, have a role in the pathogenesis of female hyperandrogenism. Prenatally androgenized (PNA) mice lacking AR in LepRb cells (LepRbΔAR) show no changes in body mass, body composition, glucose homeostasis, or sexual maturation. They do show, however, a remarkable improvement of estrous cycles combined with normalization of ovary morphology compared to PNA controls. Our findings indicate that the prenatal androgenization effects on adult reproductive physiology (ie, anestrus and anovulation) are mediated by a subpopulation of LepRb neurons directly sensitive to androgens. They also suggest that the effects of hyperandrogenism on sexual maturation and reproductive function in adult females are controlled by distinct neural circuits.


Assuntos
Anovulação , Hiperandrogenismo , Síndrome do Ovário Policístico , Gravidez , Humanos , Camundongos , Feminino , Animais , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Hiperandrogenismo/genética , Hiperandrogenismo/complicações , Receptores para Leptina/genética , Maturidade Sexual , Androgênios/farmacologia , Síndrome do Ovário Policístico/metabolismo , Virilismo , Ciclo Estral
4.
Diabetes ; 71(11): 2297-2312, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35983955

RESUMO

The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.


Assuntos
Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Sirolimo/farmacologia , Insulina/metabolismo , Obesidade/genética , Camundongos Obesos , Hiperglicemia/genética , Glucose , Proteínas Serina-Treonina Quinases/genética
5.
Am J Physiol Gastrointest Liver Physiol ; 322(2): G247-G255, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935522

RESUMO

Growth differentiation factor 15 (GDF15), a TGFß superfamily cytokine, acts through its receptor, cell line-derived neurotrophic factorfamily receptor α-like (GFRAL), to suppress food intake and promote nausea. GDF15 is broadly expressed at low levels but increases in states of disease such as cancer, cachexia, and sepsis. Whether GDF15 is necessary for inducing sepsis-associated anorexia and body weight loss is currently unclear. To test this we used a model of moderate systemic infection in GDF15KO and GFRALKO mice with lipopolysaccharide (LPS) treatment to define the role of GDF15 signaling in infection-mediated physiologic responses. Since physiological responses to LPS depend on housing temperature, we tested the effects of subthermoneutral and thermoneutral conditions on eliciting anorexia and inducing GDF15. Our data demonstrate a conserved LPS-mediated increase in circulating GDF15 levels in mouse, rat, and human. However, we did not detect differences in LPS-induced anorexia between WT and GDF15KO or GFRALKO mice. Furthermore, there were no differences in anorexia or circulating GDF15 levels at either thermoneutral or subthermoneutral housing conditions in LPS-treated mice. These data demonstrate that GDF15 is not necessary to drive food intake suppression in response to moderate doses of LPS.NEW & NOTEWORTHY Although many responses to LPS depend on housing temperature, the anorexic response to LPS does not. LPS results in a potent and rapid increase in circulating levels of GDF15 in mice, rats, and humans. Nevertheless, GDF15 and its receptor (GFRAL) are not required for the anorexic response to systemic LPS administration. The anorexic response to LPS likely involves a myriad of complex physiological alterations.


Assuntos
Anorexia/metabolismo , Fator 15 de Diferenciação de Crescimento/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Lipopolissacarídeos/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Camundongos , Náusea/induzido quimicamente , Ratos , Redução de Peso/efeitos dos fármacos
6.
Elife ; 102021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704065

RESUMO

While Cre-dependent viral systems permit the manipulation of many neuron types, some cell populations cannot be targeted by a single DNA recombinase. Although the combined use of Flp and Cre recombinases can overcome this limitation, insufficient recombinase activity can reduce the efficacy of existing Cre+Flp-dependent viral systems. We developed a sensitive dual recombinase-activated viral approach: tTA-driven Recombinase-Guided Intersectional Targeting (tTARGIT) adeno-associated viruses (AAVs). tTARGIT AAVs utilize a Flp-dependent tetracycline transactivator (tTA) 'Driver' AAV and a tetracycline response element-driven, Cre-dependent 'Payload' AAV to express the transgene of interest. We employed this system in Slc17a6FlpO;LeprCre mice to manipulate LepRb neurons of the ventromedial hypothalamus (VMH; LepRbVMH neurons) while omitting neighboring LepRb populations. We defined the circuitry of LepRbVMH neurons and roles for these cells in the control of food intake and energy expenditure. Thus, the tTARGIT system mediates robust recombinase-sensitive transgene expression, permitting the precise manipulation of previously intractable neural populations.


The brain contains hundreds of types of neurons, which differ in size, shape and behavior. But neuroscientists often wish to study individual neuronal types in isolation. They are able to do this with the aid of a toolkit made up of two parts: viral vectors and genetically modified mice. Viral vectors are viruses that have been modified so that they are no longer harmful and can instead be used to introduce genetic material into cells on demand. To create a viral vector, the virus' own genetic material is replaced with a 'cargo' gene, such as the gene for a fluorescent protein. The virus is then introduced into a new host such as a mouse. Importantly, the virus only produces the protein encoded by its 'cargo' gene if it is inside a cell that also contains one of two specific enzymes. These enzymes are called Cre and Flp. This is where the second part of the toolkit comes in. Mice can be genetically engineered to produce either Cre or Flp exclusively in specific cell types. By introducing a viral vector into mice that produce either Cre or Flp only in one particular type of neuron, researchers can limit the activity of the cargo gene to that neuronal type. But sometimes even this approach is not selective enough. Researchers may wish to limit the activity of the cargo gene to a subpopulation of cells that produce Cre or Flp. Or they may wish to target only Cre- or Flp-producing cells in a small area of the brain, while leaving cells in neighboring areas unaffected. Sabatini et al. have now overcome this limitation by developing and testing a new set of viral vectors that are active only in neurons that produce both Cre and Flp. The vectors are called tTARGIT AAVs and allow researchers to target cells more precisely than was possible with the previous version of the toolkit. Sabatini et al. show tTARGIT AAVs in action by using them to identify a group of neurons that control how much energy mice use and how much food they eat. As well as applying the vectors to their own research on obesity, Sabatini et al. have also made them freely available for other researchers to use in their own projects.


Assuntos
Expressão Gênica , Neurônios/fisiologia , Transgenes , Animais , Dependovirus/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos
7.
J Neurosci ; 40(49): 9455-9466, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33158965

RESUMO

Gonadal steroids modulate growth hormone (GH) secretion and the pubertal growth spurt via undefined central pathways. GH-releasing hormone (GHRH) neurons express estrogen receptor α (ERα) and androgen receptor (AR), suggesting changing levels of gonadal steroids during puberty directly modulate the somatotropic axis. We generated mice with deletion of ERα in GHRH cells (GHRHΔERα), which displayed reduced body length in both sexes. Timing of puberty onset was similar in both groups, but puberty completion was delayed in GHRHΔERα females. Lack of AR in GHRH cells (GHRHΔAR mice) induced no changes in body length, but puberty completion was also delayed in females. Using a mouse model with two reporter genes, we observed that, while GHRHtdTom neurons minimally colocalize with Kiss1hrGFP in prepubertal mice, ∼30% of GHRH neurons coexpressed both reporter genes in adult females, but not in males. Developmental analysis of Ghrh and Kiss1 expression suggested that a subpopulation of ERα neurons in the arcuate nucleus of female mice undergoes a shift in phenotype, from GHRH to Kiss1, during pubertal transition. Our findings demonstrate that direct actions of gonadal steroids in GHRH neurons modulate growth and puberty and indicate that GHRH/Kiss1 dual-phenotype neurons play a sex-specific role in the crosstalk between the somatotropic and gonadotropic axes during pubertal transition.SIGNIFICANCE STATEMENT Late maturing adolescents usually show delayed growth and bone age. At puberty, gonadal steroids have stimulatory effects on the activation of growth and reproductive axes, but the existence of gonadal steroid-sensitive neuronal crosstalk remains undefined. Moreover, the neural basis for the sex differences observed in the clinical arena is unknown. Lack of ERα in GHRH neurons disrupts growth in both sexes and causes pubertal delay in females. Deletion of androgen receptor in GHRH neurons only delayed female puberty. In adult females, not males, a subset of GHRH neurons shift phenotype to start producing Kiss1. Thus, direct estrogen action in GHRH/Kiss1 dual-phenotype neurons modulates growth and puberty and may orchestrate the sex differences in endocrine function observed during pubertal transition.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Hormônio Liberador de Hormônio do Crescimento/fisiologia , Crescimento/fisiologia , Kisspeptinas/fisiologia , Maturidade Sexual/fisiologia , Transdução de Sinais/fisiologia , Animais , Receptor alfa de Estrogênio/genética , Feminino , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/fisiologia , Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Knockout , Receptores Androgênicos/fisiologia , Caracteres Sexuais , Maturidade Sexual/genética , Transdução de Sinais/genética
8.
iScience ; 23(10): 101563, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083731

RESUMO

Epidemiological and genome-wide association studies (GWAS) have shown high correlation between childhood obesity and advance in puberty. Early age at menarche is associated with a series of morbidities, including breast cancer, cardiovascular diseases, type 2 diabetes, and obesity. The adipocyte hormone leptin signals the amount of fat stores to the neuroendocrine reproductive axis via direct actions in the brain. Using mouse genetics, we and others have identified the hypothalamic ventral premammillary nucleus (PMv) and the agouti-related protein (AgRP) neurons in the arcuate nucleus (Arc) as primary targets of leptin action in pubertal maturation. However, the molecular mechanisms underlying leptin's effects remain unknown. Here we assessed changes in the PMv and Arc transcriptional program during leptin-stimulated and typical pubertal development using overlapping analysis of bulk RNA sequecing, TRAP sequencing, and the published database. Our findings demonstrate that dynamic somatodendritic remodeling and extracellular space organization underlie leptin-induced and typical pubertal maturation in female mice.

9.
Elife ; 82019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30946012

RESUMO

The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedbacks are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest that activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.


Assuntos
Hipotálamo/fisiologia , Neurônios/fisiologia , Reprodução , Comportamento Sexual Animal , Animais , Estradiol/metabolismo , Receptor alfa de Estrogênio/deficiência , Feminino , Técnicas de Inativação de Genes , Kisspeptinas/análise , Camundongos Knockout , Neurônios/química
10.
Cell Mol Gastroenterol Hepatol ; 7(3): 533-554, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827941

RESUMO

BACKGROUND & AIMS: Loss of leucine-rich repeat-containing G-protein-coupled receptor 5-positive crypt base columnar cells provides permissive conditions for different facultative stem cell populations to dedifferentiate and repopulate the stem cell compartment. In this study, we used a defensin α4-Cre recombinase (Defa4Cre) line to define the potential of Paneth cells to dedifferentiate and contribute to intestinal stem cell (ISC) maintenance during normal homeostasis and after intestinal injury. METHODS: Small intestine and enteroids from Defa4Cre;Rosa26 tandem dimer Tomato (tdTomato), a red fluoresent protein, (or Rosa26 Enhanced Yellow Fluorescent Protein (EYFP)) reporter, Notch gain-of-function (Defa4Cre;Rosa26 Notch Intracellular Domain (NICD)-ires-nuclear Green Fluorescent Protein (nGFP) and Defa4Cre;Rosa26reverse tetracycline transactivator-ires Enhanced Green Fluorescent Protein (EGFP);TetONICD), A Disintegrin and Metalloproteinase domain-containing protein 10 (ADAM10) loss-of-function (Defa4Cre;ADAM10flox/flox), and Adenomatous polyposis coli (APC) inactivation (Defa4Cre;APCflox/flox) mice were analyzed. Doxorubicin treatment was used as an acute intestinal injury model. Lineage tracing, proliferation, and differentiation were assessed in vitro and in vivo. RESULTS: Defa4Cre-expressing cells are fated to become mature Paneth cells and do not contribute to ISC maintenance during normal homeostasis in vivo. However, spontaneous lineage tracing was observed in enteroids, and fluorescent-activated cell sorter-sorted Defa4Cre-marked cells showed clonogenic enteroid growth. Notch activation in Defa4Cre-expressing cells caused dedifferentiation to multipotent ISCs in vivo and was required for adenoma formation. ADAM10 deletion had no significant effect on crypt homeostasis. However, after acute doxorubicin-induced injury, Defa4Cre-expressing cells contributed to regeneration in an ADAM10-Notch-dependent manner. CONCLUSIONS: Our studies have shown that Defa4Cre-expressing Paneth cells possess cellular plasticity, can dedifferentiate into multipotent stem cells upon Notch activation, and can contribute to intestinal regeneration in an acute injury model.


Assuntos
Plasticidade Celular , Integrases/metabolismo , Intestinos/lesões , Intestinos/patologia , Celulas de Paneth/metabolismo , Receptores Notch/metabolismo , alfa-Defensinas/metabolismo , Proteína ADAM10/metabolismo , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/metabolismo , Alelos , Animais , Desdiferenciação Celular , Linhagem da Célula , Células Clonais , Doxorrubicina , Deleção de Genes , Homeostase , Hiperplasia , Camundongos , Mitose , Células-Tronco Multipotentes/metabolismo , Organoides/crescimento & desenvolvimento , Organoides/patologia , Regeneração
11.
Mol Metab ; 21: 13-21, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30685336

RESUMO

OBJECTIVE: Analogues of GDF15 (Growth Differentiation Factor 15) are promising new anti-obesity therapies as pharmacological treatment with GDF15 results in dramatic reductions of food intake and body weight. GDF15 exerts its central anorexic effects by binding to the GFRAL receptor exclusively expressed in the Area Postrema (AP) and the Nucleus of the Solitary Tract (NTS) of the hindbrain. We sought to determine if GDF15 is an indispensable factor for other interventions that cause weight loss and which are also known to act via these hindbrain regions. METHODS: To explore the role of GDF15 on food choice we performed macronutrient intake studies in mice treated pharmacologically with GDF15 and in mice having either GDF15 or GFRAL deleted. Next we performed vertical sleeve gastrectomy (VSG) surgeries in a cohort of diet-induced obese Gdf15-null and control mice. To explore the anatomical co-localization of neurons in the hindbrain responding to GLP-1 and/or GDF15 we used GLP-1R reporter mice treated with GDF15, as well as naïve mouse brain and human brain stained by ISH and IHC, respectively, for GLP-1R and GFRAL. Lastly we performed a series of food intake experiments where we treated mice with targeted genetic disruption of either Gdf15 or Gfral with liraglutide; Glp1r-null mice with GDF15; or combined liraglutide and GDF15 treatment in wild-type mice. RESULTS: We found that GDF15 treatment significantly lowered the preference for fat intake in mice, whereas no changes in fat intake were observed after genetic deletion of Gdf15 or Gfral. In addition, deletion of Gdf15 did not alter the food intake or bodyweight after sleeve gastrectomy. Lack of GDF15 or GFRAL signaling did not alter the ability of the GLP-1R agonist liraglutide to reduce food intake. Similarly lack of GLP-1R signaling did not reduce GDF15's anorexic effect. Interestingly, there was a significant synergistic effect on weight loss when treating wild-type mice with both GDF15 and liraglutide. CONCLUSION: These data suggest that while GDF15 does not play a role in the potent effects of VSG in mice there seems to be a potential therapeutic benefit of activating GFRAL and GLP-1R systems simultaneously.


Assuntos
Cirurgia Bariátrica , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Área Postrema/metabolismo , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Sinergismo Farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Gastrectomia , Deleção de Genes , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Núcleo Solitário/metabolismo
12.
Nat Metab ; 1(3): 314-320, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-32694719

RESUMO

Tissue-resident myeloid cells initiate local inflammation in response to infectious or injurious stimuli. Sixteen years ago, macrophages in the adipose tissue (ATMs) were shown to undergo a form of activation in response to diet-induced obesity, thus leading to the conclusion that these macrophages sense a type of pro-inflammatory injury. ATMs are now known to be central to adipose tissue development, plasticity, maintenance and function. Indeed, their involvement in obesity may represent hijacking of these functions. More recently, microglia, 'CNS macrophages', have been shown to accumulate and undergo activation in response to dietary excess in the mediobasal hypothalamus (MBH), and early studies have implicated these cells as injury-responsive mediators of hypothalamic dysfunction. However, microglia are amazingly diverse cells now known to have moment-to-moment sensory functions and to communicate with neighbouring neurons to maintain and shape brain circuitry. Here, we build on this view, detailing our rapidly evolving understanding of microglial heterogeneity in the MBH and their roles as nutrient and environmental sensors. We propose that microglia, instead of simply responding to diet-induced damage, act as critical metabolic regulators that may coordinate a complex cellular network in the MBH. Understanding their roles in hypothalamic development and function should reveal unexpected mechanistic information relevant to important diseases such as obesity.


Assuntos
Hipotálamo/fisiologia , Microglia/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta , Metabolismo Energético , Humanos , Hipotálamo/citologia , Hipotálamo/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo
13.
J Clin Hypertens (Greenwich) ; 20(12): 1696-1702, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30328275

RESUMO

The recent American hypertension guidelines recommended a threshold of 130/80 mmHg to define hypertension on the basis of office, home or ambulatory blood pressure (BP). Despite recognizing the potential advantages of automated office (AO)BP, the recommendations only considered conventional office BP, without providing supporting evidence and without taking into account the well documented difference between office BP recorded in research studies versus routine clinical practice, the latter being about 10/7 mmHg higher. Accordingly, we examined the relationship between AOBP and awake ambulatory BP, which the guidelines considered to be a better predictor of future cardiovascular risk than office BP. AOBP readings and 24-hour ambulatory BP recordings were obtained in 514 untreated patients referred for ambulatory BP monitoring in routine clinical practice. The relationship between mean AOBP and mean awake ambulatory BP was examined using linear regression analysis with and without adjustment for age and sex. Special attention was given to the thresholds of 130/80 and 135/85 mmHg, the latter value being the recognized threshold for defining hypertension using awake ambulatory BP, home BP and AOBP in other guidelines. The mean adjusted AOBP of 130/80 and 135/85 mmHg corresponded to mean awake ambulatory BP values of 132.1/81.5 and 134.4/84.6 mmHg, respectively. These findings support the use of AOBP as the method of choice for determining office BP in routine clinical practice, regardless of which of the two thresholds are used for diagnosing hypertension, with an AOBP of 135/85 mmHg being somewhat closer to the corresponding value for awake ambulatory BP.


Assuntos
Automação/métodos , Pressão Sanguínea/fisiologia , Hipertensão/fisiopatologia , Padrões de Prática Médica/normas , Vigília/fisiologia , Adulto , Idoso , Automação/instrumentação , Determinação da Pressão Arterial/instrumentação , Determinação da Pressão Arterial/métodos , Monitorização Ambulatorial da Pressão Arterial/instrumentação , Monitorização Ambulatorial da Pressão Arterial/métodos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Feminino , Humanos , Hipertensão/diagnóstico , Modelos Lineares , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Visita a Consultório Médico , Análise de Regressão
14.
Cell Metab ; 28(4): 619-630.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30146485

RESUMO

To meet the challenge to human health posed by obesity, a better understanding of the regulation of feeding is essential. Medications targeting 5-hydroxytryptamine (5-HT; serotonin) 2C receptors (htr2c; 5-HT2CR) improve obesity. Here we probed the functional significance of 5-HT2CRs specifically within the brainstem nucleus of the solitary tract (5-HT2CRNTS) in feeding behavior. Selective activation of 5-HT2CRNTS decreased feeding and was sufficient to mediate acute food intake reductions elicited by the 5-HT2CR agonist obesity medication lorcaserin. Similar to pro-opiomelanocortin neurons expressed within the hypothalamic arcuate nucleus (POMCARC), a subset of POMCNTS neurons co-expressed 5-HT2CRs and were activated by 5-HT2CR agonists. Knockdown of POMCNTS prevented the acute appetite-suppressive effect of lorcaserin, whereas POMCARC knockdown prevented the full anorectic effect. These data identify 5-HT2CRNTS as a sufficient subpopulation of 5-HT2CRs in reducing food intake when activated and reveal that 5-HT2CR agonist obesity medications require POMC within the NTS and ARC to reduce food intake.


Assuntos
Depressores do Apetite/uso terapêutico , Benzazepinas/uso terapêutico , Ingestão de Alimentos/fisiologia , Obesidade/tratamento farmacológico , Agonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Núcleo Solitário/metabolismo , Análise de Variância , Animais , Depressores do Apetite/metabolismo , Regulação do Apetite/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/citologia , Benzazepinas/metabolismo , Linhagem Celular Tumoral , Comportamento Alimentar/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/metabolismo , Estatísticas não Paramétricas , Transfecção
15.
J Clin Hypertens (Greenwich) ; 20(7): 1089-1091, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30003695

RESUMO

In the last 2 decades, several scientific societies have published specific guidelines for blood pressure (BP) measurement, providing detailed recommendations for office, home, and ambulatory BP monitoring. These documents typically provided strong support for using out-of-office BP monitoring (ambulatory and home). More recently, several organizations recommended out-of-office BP evaluation as a primary method for diagnosing hypertension and for treatment titration, with office BP regarded as a screening method. Efforts should now be directed towards making ambulatory and home BP monitoring readily available in primary care and ensuring that such measurements are obtained by following current guidelines. Moreover, it should be mandatory for all published clinical research papers on hypertension to provide details on the methodology of the BP measurement.


Assuntos
Determinação da Pressão Arterial/história , Determinação da Pressão Arterial/instrumentação , Monitorização Ambulatorial da Pressão Arterial/métodos , Hipertensão/fisiopatologia , Pressão Sanguínea/fisiologia , Guias como Assunto , História do Século XX , História do Século XXI , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Programas de Rastreamento/métodos , Atenção Primária à Saúde
16.
Am J Physiol Lung Cell Mol Physiol ; 315(1): L78-L86, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29565180

RESUMO

Leptin is a pleiotropic hormone produced by white adipose tissue that regulates appetite and many physiological functions, including the immune response to infection. Genetic leptin deficiency in humans and mice impairs host defenses against respiratory tract infections. Since leptin deficiency is associated with obesity and other metabolic abnormalities, we generated mice that lack the leptin receptor (LepRb) in cells of the myeloid linage (LysM-LepRb-KO) to evaluate its impact in lean metabolically normal mice in a murine model of pneumococcal pneumonia. We observed higher lung and spleen bacterial burdens in LysM-LepRb-KO mice following an intratracheal challenge with Streptococcus pneumoniae. Although numbers of leukocytes recovered from bronchoalveolar lavage fluid did not differ between groups, we did observe higher levels of pulmonary IL-13 and TNFα in LysM-LepRb-KO mice 48 h post infection. Phagocytosis and killing of ingested S. pneumoniae were also impaired in alveolar macrophages (AMs) from LysM-LepRb-KO mice in vitro and were associated with reduced LTB4 and enhanced PGE2 synthesis in vitro. Pretreatment of AMs with LTB4 and the cyclooxygenase inhibitor, indomethacin, restored phagocytosis but not bacterial killing in vitro. These results confirm our previous observations in leptin-deficient ( ob/ob) and fasted mice and demonstrate that decreased leptin action, as opposed to metabolic irregularities associated with obesity or starvation, is responsible for the defective host defense against pneumococcal pneumonia. They also provide novel targets for therapeutic intervention in humans with bacterial pneumonia.


Assuntos
Pulmão/imunologia , Macrófagos/imunologia , Fagocitose , Pneumonia Pneumocócica/imunologia , Receptores para Leptina/imunologia , Streptococcus pneumoniae/imunologia , Animais , Interleucina-13/genética , Interleucina-13/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/patologia , Receptores para Leptina/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
J Clin Invest ; 128(3): 1125-1140, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29457782

RESUMO

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron-specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/patologia , Hipotálamo/patologia , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Animais , Axônios , Cisteína/química , Comportamento Alimentar , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neurônios/metabolismo , Fenilalanina/química , Pró-Opiomelanocortina/genética , Proteínas/metabolismo , Compostos de Sulfidrila , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
EMBO J ; 37(1): 19-38, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150432

RESUMO

The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-ß production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.


Assuntos
Imunidade Inata/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
19.
J Neurosci ; 38(5): 1061-1072, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29114074

RESUMO

Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol.SIGNIFICANCE STATEMENT The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and in vivo hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.


Assuntos
Estradiol/farmacologia , Glutamatos/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Receptores de Estrogênio/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Dinorfinas/farmacologia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hipotálamo/efeitos dos fármacos , Hormônio Luteinizante/fisiologia , Camundongos , Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Hipófise/fisiologia , Proestro/fisiologia , Receptores Ionotrópicos de Glutamato/efeitos dos fármacos , Receptores Ionotrópicos de Glutamato/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
20.
Endocr Relat Cancer ; 24(8): 415-426, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28729467

RESUMO

Leptin (LEP) binds to the long form of the leptin receptor (LEPRb), leading to the activation of multiple signaling pathways that are potential targets for disrupting the obesity-breast cancer link. In triple-negative breast cancer (TNBC), LEP is hypothesized to predominantly mediate its tumorigenic effects via a subpopulation of LEPRb-positive tumor cells termed cancer stem cells (CSCs) that can initiate tumors and induce tumor progression. Previously, we showed that LEP promotes CSC survival in vivo Moreover, silencing LEPRb in TNBC cells compromised the CSC state. The mechanisms by which LEPRb regulates TNBC CSC intracellular signaling are not clear. We hypothesized that activation of LEPRb signaling is sufficient to drive CSC maintenance in TNBC. Here, we show that activation of LEPRb in non-CSCs isolated using our CSC reporter system resulted in a transition to the stem cell state. In CSCs, LEP induced STAT3 phosphorylation, whereas LEP did not induce STAT3 phosphorylation in non-CSCs. Introduction of constitutively active STAT3 into LEPRb-transfected non-CSCs significantly induced NANOG, SOX2 and OCT4 expression compared with control non-CSCs. To determine the intracellular phospho-tyrosine residue of LEPRb that is necessary for the induction of the stem cell state in non-CSCs, we transfected the tyrosine residue point mutants L985, F1077 and S1138 into non-CSCs. Non-CSCs transfected with the L985 mutant exhibited increased STAT3 phosphorylation, increased SOCS3 expression and an induction of GFP expression compared with non-CSCs expressing the F1077 and S1138 mutants. Our data demonstrate that LEPRb-induced STAT3 activation is essential for the induction and maintenance of TNBC CSCs.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Proteína Homeobox Nanog/genética , Fosforilação , Regiões Promotoras Genéticas , Receptores para Leptina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA