Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(1): 211-216, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30559202

RESUMO

Bone marrow (BM) produces all blood and immune cells deriving from hematopoietic stem cells (HSCs). The decrease of immune cell production during aging is one of the features of immunosenescence. The impact of redox dysregulation in BM aging is still poorly understood. Here we use TP53INP1-deficient (KO) mice endowed with chronic oxidative stress to assess the influence of aging-associated redox alterations in BM homeostasis. We show that TP53INP1 deletion has no impact on aging-related accumulation of HSCs. In contrast, the aging-related contraction of the lymphoid compartment is mitigated in TP53INP1 KO mice. B cells that accumulate in old KO BM are differentiating cells that can mature into functional B cells. Importantly, this phenotype results from B cell-intrinsic events associated with defective redox control. Finally, we show that oxidative stress in aged TP53INP1-deficient mice maintains STAT5 expression and activation in early B cells, driving high Pax5 expression, which provides a molecular mechanism for maintenance of B cell development upon aging.


Assuntos
Linfócitos B/fisiologia , Medula Óssea/fisiologia , Linfopoese , Proteínas Nucleares/deficiência , Receptores de Interleucina-7/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Envelhecimento/fisiologia , Animais , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Linfopoese/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo
2.
Nat Commun ; 8(1): 913, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030552

RESUMO

Toll-like receptors (TLR) are essential components of the innate immune system. Several accessory proteins, such as UNC93B1, are required for transport and activation of nucleic acid sensing Toll-like receptors in endosomes. Here, we show that BAD-LAMP (LAMP5) controls TLR9 trafficking to LAMP1+ late endosomes in human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and TNF production upon DNA detection. An inducible VAMP3+/LAMP2+/LAMP1- endolysosome compartment exists in pDCs from which TLR9 activation triggers type I interferon expression. BAD-LAMP-silencing enhances TLR9 retention in this compartment and consequent downstream signalling events. Conversely, sustained BAD-LAMP expression in pDCs contributes to their lack of type I interferon production after exposure to a TGF-ß-positive microenvironment or isolation from human breast tumours. Hence, BAD-LAMP limits interferon expression in pDCs indirectly, by promoting TLR9 sorting to late endosome compartments at steady state and in response to immunomodulatory cues.TLR9 is highly expressed by plasmacytoid dendritic cells and detects nucleic acids, but to discriminate between host and microbial nucleic acids TLR9 is sorted into different endosomal compartments. Here the authors show that BAD-LAMP limits type 1 interferon responses by sorting TLR9 to late endosomal compartments.


Assuntos
Células Dendríticas/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Endossomos/metabolismo , Humanos , Interferon Tipo I/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Microscopia Confocal , NF-kappa B/metabolismo , Transporte Proteico , Interferência de RNA , Receptor Toll-Like 9/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína 3 Associada à Membrana da Vesícula/genética , Proteína 3 Associada à Membrana da Vesícula/metabolismo
3.
EMBO Mol Med ; 7(6): 802-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25828351

RESUMO

The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.


Assuntos
Síndrome Metabólica/fisiopatologia , Mitofagia , Proteínas Nucleares/metabolismo , Animais , Modelos Animais de Doenças , Resistência à Insulina , Camundongos , Proteínas Nucleares/deficiência , Obesidade , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/análise
4.
Cell Rep ; 10(1): 39-46, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25543139

RESUMO

In cancer, immune cells can play conflicting roles, either protective, by elimination of tumor cells during immune surveillance, or detrimental, by promoting carcinogenesis during inflammation. We report here that the thymus-specific serine protease (TSSP), which is involved in CD4(+) T cell maturation in the thymus, exerts a tumor suppressor activity. Mice genetically deficient for TSSP are highly prone to spontaneous cancer development. The absence of TSSP also increases the rate of induced colitis-associated colorectal (CAC) tumor formation, through exacerbated colon inflammation. Adoptive transfer of T cells in various combinations (CD4(+) and CD8(+) from wild-type and/or knockout mice) into T cell-deficient mice showed that the TSSP-deficient CD4(+) T cell compartment promotes tumor development, associated with high levels of the cytokine IL-17A. Inhibition of IL-17A during CAC tumor formation prevents the increased carcinogenesis and colic immune disequilibrium observed in TSSP-deficient mice. Therefore, our data demonstrate that antitumoral immune surveillance requires thymic TSSP-driven production of CD4(+) T cells contributing to inflammatory balance.


Assuntos
Colite/genética , Neoplasias Colorretais/genética , Inflamação/genética , Serina Endopeptidases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Colite/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Serina Endopeptidases/biossíntese , Timo/imunologia , Timo/metabolismo
5.
Antioxid Redox Signal ; 15(6): 1639-53, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21235351

RESUMO

The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53-deficient thymocytes. Stress-induced ROS production is enhanced in the absence of TP53INP1, and antioxidant NAC complementation abolishes increased sensitivity to apoptosis of TP53INP1-deficient cells. Furthermore, antioxidant defenses are defective in TP53INP1-deficient mice in correlation with ROS dysregulation. Finally, we show that autophagy is reduced in TP53INP1-deficient cells both at the basal level and upon stress. Altogether, these data show that impaired ROS regulation in TP53INP1-deficient cells is responsible for their sensitivity to induced apoptosis. In addition, they suggest that this sensitivity could rely on a defect of autophagy. Therefore, these data emphasize the role of TP53INP1 in protection against cell injury.


Assuntos
Apoptose , Fibroblastos/fisiologia , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Timo/citologia , 2,6-Dicloroindofenol/farmacologia , Animais , Ciclo Celular , Células Cultivadas , Fibroblastos/citologia , Expressão Gênica , Glutationa/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Oxirredução , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA