Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14133, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237523

RESUMO

Kidney proximal tubular cells (PTCs) are highly specialized for ultrafiltrate reabsorption and serve as paradigm of apical epithelial differentiation. Vps34/PI3-kinase type III (PI3KC3) regulates endosomal dynamics, macroautophagy and lysosomal function. However, its in vivo role in PTCs has not been evaluated. Conditional deletion of Vps34/PI3KC3 in PTCs by Pax8-Cre resulted in early (P7) PTC dysfunction, manifested by Fanconi-like syndrome, followed by kidney failure (P14) and death. By confocal microscopy, Vps34∆/∆ PTCs showed preserved apico-basal specification (brush border, NHERF-1 versus Na+/K+-ATPase, ankyrin-G) but basal redistribution of late-endosomes/lysosomes (LAMP-1) and mis-localization to lysosomes of apical recycling endocytic receptors (megalin, cubilin) and apical non-recycling solute carriers (NaPi-IIa, SGLT-2). Defective endocytosis was confirmed by Texas-red-ovalbumin tracing and reduced albumin content. Disruption of Rab-11 and perinuclear galectin-3 compartments suggested mechanistic clues for defective receptor recycling and apical biosynthetic trafficking. p62-dependent autophagy was triggered yet abortive (p62 co-localization with LC3 but not LAMP-1) and PTCs became vacuolated. Impaired lysosomal positioning and blocked autophagy are known causes of cell stress. Thus, early trafficking defects show that Vps34 is a key in vivo component of molecular machineries governing apical vesicular trafficking, thus absorptive function in PTCs. Functional defects underline the essential role of Vps34 for PTC homeostasis and kidney survival.


Assuntos
Autofagia/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Hipersensibilidade Tardia/genética , Síndromes de Imunodeficiência/genética , Túbulos Renais Proximais/metabolismo , Pancitopenia/genética , Insuficiência Renal/genética , Neoplasias Cutâneas/genética , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Hipersensibilidade Tardia/metabolismo , Síndromes de Imunodeficiência/metabolismo , Camundongos , Camundongos Knockout , Pancitopenia/metabolismo , Transporte Proteico , Insuficiência Renal/metabolismo , Neoplasias Cutâneas/metabolismo
2.
Front Immunol ; 7: 663, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28105029

RESUMO

The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation.

3.
J Am Soc Nephrol ; 25(6): 1256-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24525030

RESUMO

Cystinosis, a main cause of Fanconi syndrome, is reproduced in congenic C57BL/6 cystinosin knockout (KO) mice. To identify the sequence of pathogenic and adaptation mechanisms of nephropathic cystinosis, we defined the onset of Fanconi syndrome in KO mice between 3 and 6 months of age and analyzed the correlation with structural and functional changes in proximal tubular cells (PTCs), with focus on endocytosis of ultrafiltrated disulfide-rich proteins as a key source of cystine. Despite considerable variation between mice at the same age, typical event sequences were delineated. At the cellular level, amorphous lysosomal inclusions preceded cystine crystals and eventual atrophy without crystals. At the nephron level, lesions started at the glomerulotubular junction and then extended distally. In situ hybridization and immunofluorescence revealed progressive loss of expression of megalin, cubilin, sodium-glucose cotransporter 2, and type IIa sodium-dependent phosphate cotransporter, suggesting apical dedifferentiation accounting for Fanconi syndrome before atrophy. Injection of labeled proteins revealed that defective endocytosis in S1 PTCs led to partial compensatory uptake by S3 PTCs, suggesting displacement of endocytic load and injury by disulfide-rich cargo. Increased PTC apoptosis allowed luminal shedding of cystine crystals and was partially compensated for by tubular proliferation. We conclude that lysosomal storage triggered by soluble cystine accumulation induces apical PTC dedifferentiation, which causes transfer of the harmful load of disulfide-rich proteins to more distal cells, possibly explaining longitudinal progression of swan-neck lesions. Furthermore, our results suggest that subsequent adaptation mechanisms include lysosomal clearance of free and crystalline cystine into urine and ongoing tissue repair.


Assuntos
Adaptação Fisiológica/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinose/fisiopatologia , Síndrome de Fanconi/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Animais , Apoptose/fisiologia , Proliferação de Células , Cristalização , Cistina/química , Cistina/metabolismo , Cistinose/genética , Cistinose/patologia , Modelos Animais de Doenças , Progressão da Doença , Endocitose/fisiologia , Síndrome de Fanconi/genética , Síndrome de Fanconi/patologia , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Receptores de Superfície Celular/genética , Vacúolos/patologia
4.
Mol Genet Metab ; 109(1): 77-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23465695

RESUMO

Infection of Spodoptera frugiperda (Sf9) cells by baculovirus (BV) is well established for transgene expression of soluble proteins, but few correctly folded transmembrane proteins have been so produced. We here report the use of the BV/Sf9 (BVES) method for the expression and transfer, via microvesicles, of the exclusive lysosomal exporters for cystine and sialic acid, human cystinosin and sialin. These proteins and their mRNA are released into the culture medium as very low-density microvesicles (~1.05 g/ml), which do not label for lysobisphosphatidic acid. The presence of the human transgene proteins in the vesicles was confirmed by western blotting and confirmed and quantified by mass spectrometry. Addition of vesicles to cultures of human fibroblast lines deficient in either cystinosin or sialin produced a progressive depletion of stored lysosomal cystine or sialic acid, respectively. The depletion effect was slow (T1/2 ~48 h), saturable (down to ~40% of initial after 4 days) and stable (>one week). Surprisingly, BV infection of Spodoptera appeared to induce expression and release into microvesicles of the insect orthologue of cystinosin, but not of sialin. We conclude that BVES is an effective method to express and transfer functional transmembrane proteins so as to study their properties in mammalian cells, and has a generic potential for transport protein replacement therapy.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Doença do Armazenamento de Ácido Siálico/genética , Doença do Armazenamento de Ácido Siálico/terapia , Simportadores/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Baculoviridae , Linhagem Celular , Técnicas de Transferência de Genes , Humanos , Técnicas In Vitro , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microvasos/metabolismo , Transportadores de Ânions Orgânicos/genética , Regiões Promotoras Genéticas , Doença do Armazenamento de Ácido Siálico/patologia , Spodoptera/citologia , Simportadores/genética
5.
J Am Soc Nephrol ; 21(3): 478-88, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20133480

RESUMO

Epithelial polarization modulates gene expression. The transcription factor zonula occludens 1 (ZO-1)-associated nucleic acid binding protein (ZONAB) can shuttle between tight junctions and nuclei, promoting cell proliferation and expression of cyclin D1 and proliferating cell nuclear antigen (PCNA), but whether it also represses epithelial differentiation is unknown. Here, during mouse kidney ontogeny and polarization of proximal tubular cells (OK cells), ZONAB and PCNA levels decreased in parallel and inversely correlated with increasing apical differentiation, reflected by expression of megalin/cubilin, maturation of the brush border, and extension of the primary cilium. Conversely, ZONAB reexpression and loss of apical differentiation markers provided a signature for renal clear cell carcinoma. In confluent OK cells, ZONAB overexpression increased proliferation and PCNA while repressing megalin/cubilin expression and impairing differentiation of the brush border and primary cilium. Reporter and chromatin immunoprecipitation assays demonstrated that megalin and cubilin are ZONAB target genes. Sparsely plated OK cells formed small islands composed of distinct populations: Cells on the periphery, which lacked external tight junctions, strongly expressed nuclear ZONAB, proliferated, and failed to differentiate; central cells, surrounded by continuous junctions, lost nuclear ZONAB, stopped proliferating, and engaged in apical differentiation. Taken together, these data suggest that ZONAB is an important component of the mechanisms that sense epithelial density and participates in the complex transcriptional networks that regulate the switch between proliferation and differentiation.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Túbulos Renais Proximais , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/fisiopatologia , Adulto , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Regulação para Baixo/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/fisiopatologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/embriologia , Túbulos Renais Proximais/fisiologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Gambás , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/genética , Fatores de Transcrição , Transfecção
6.
J Neurosci Res ; 84(6): 1311-22, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16941495

RESUMO

The human amyloid precursor protein (APP) is processed by the nonamyloidogenic and the amyloidogenic catabolic pathways. The sequential cleavage of APP by the beta- and gamma-secretase activities, known as the amyloidogenic processing of APP, leads to the formation of the amyloid-beta peptide (Abeta). Abeta is the main constituent of the amyloid core of senile plaques, a typical hallmark of Alzheimer's disease. In addition to secretases, other cellular proteolytic activities, like the proteasome, might participate in the metabolism of APP. We investigated the consequence of proteasome inhibition on the amyloidogenic processing of human APP. CHO cells and primary cultures of rat cortical neurons expressing human APP or a protein corresponding to its beta-cleaved C-terminal fragment (C99) were treated with lactacystin, an irreversible inhibitor of the chymotrypsin-like activity of the proteasome. Lactacystin significantly decreased the level of Abeta produced from APP in both cellular models, whereas the production of Abeta from C99 was not affected. Lactacystin did not inhibit gamma-secretase activity but was found to inhibit the beta-cleavage of APP, leading to a proportional decrease in Abeta production. Although lactacystin did not inhibit the catalytic activity of recombinant BACE1, a decrease in neuronal beta-secretase activity was measured after treatment with lactacystin.


Assuntos
Acetilcisteína/análogos & derivados , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/biossíntese , Inibidores de Cisteína Proteinase/farmacologia , Acetilcisteína/farmacologia , Adenoviridae/genética , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/genética , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Meios de Cultura , Depressão Química , Ensaio de Imunoadsorção Enzimática , Humanos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Ratos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
7.
Dev Cell ; 9(3): 377-88, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16139226

RESUMO

Syndecans are heparan sulfate proteoglycans that modulate the activity of several growth factors and cell adhesion molecules. PDZ domains in the adaptor protein syntenin interact with syndecans and with the phosphoinositide PIP(2), which is involved in the regulation of the actin cytoskeleton and membrane trafficking. Here, we show that the syntenin PDZ domain-PIP(2) interaction controls Arf6-mediated syndecan recycling through endosomal compartments. FGF receptor accompanies syndecan along the syntenin-mediated recycling pathway, in a heparan sulfate- and FGF-dependent manner. Syndecans that cannot recycle via this pathway become trapped intracellularly and inhibit cell spreading. This syntenin-mediated syndecan recycling pathway may regulate the surface availability of a number of cell adhesion and signaling molecules.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteoglicanas/metabolismo , Fator 6 de Ribosilação do ADP , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endossomos/metabolismo , Endossomos/ultraestrutura , Humanos , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/química , Sindecana-2 , Sindecanas , Sinteninas
8.
J Biol Chem ; 280(39): 33220-7, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16014628

RESUMO

Glycogen synthase kinase 3 (GSK3) is able to phosphorylate tau at many sites that are found to be phosphorylated in paired helical filaments in Alzheimer disease. Lithium chloride (LiCl) efficiently inhibits GSK3 and was recently reported to also decrease the production of amyloid-beta peptide (Abeta) from its precursor, the amyloid precursor protein. Therefore, lithium has been proposed as a combined therapeutic agent, inhibiting both the hyperphosphorylation of tau and the production of Abeta. Here, we demonstrate that the inhibition of GSK3 by LiCl induced the nuclear translocation of beta-catenin in Chinese hamster ovary cells and rat cultured neurons, in which a decrease in tau phosphorylation was observed. In both cellular models, a nontoxic concentration of LiCl increased the production of Abeta by increasing the beta-cleavage of amyloid precursor protein, generating more substrate for an unmodified gamma-secretase activity. SB415286, another GSK3 inhibitor, induced the nuclear translocation of beta-catenin and slightly decreased Abeta production. It is concluded that the LiCl-mediated increase in Abeta production is not related to GSK3 inhibition.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Cloreto de Lítio/farmacologia , Precursor de Proteína beta-Amiloide/biossíntese , Animais , Western Blotting , Células CHO , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Cricetinae , Cricetulus , Densitometria , Dependovirus/genética , Humanos , Imuno-Histoquímica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/biossíntese , Fosforilação , Testes de Precipitina , Ratos , Ratos Wistar , Proteínas tau/metabolismo
9.
Nucleic Acids Res ; 31(3): 886-92, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12560484

RESUMO

This paper shows that the approximately 66 kDa band, previously isolated from the HepG2 cell line as an oligonucleotide (ON) plasma membrane 'receptor', is induced by Mycoplasma infection. Moreover, this band has been identified as the invariant membrane protein of Mycoplasma hyorhinis, p70, based on ribosomal DNA sequencing combined with ON ligand blotting after p70 immunoprecipitation by a monoclonal antibody. Whereas antibiotic treatment of infected HepG2 cells strongly decreased ON capture, as measured by a biochemical assay, conversely, deliberate infection of HeLa cells with M.hyorhinis dramatically promoted ON uptake but did not affect receptor-mediated endocytosis of transferrin. This was confirmed by confocal microscopy of infected HepG2 cells, which also showed an indistinguishable labelling pattern after exposure of living cells to fluorescent ON and after p70 immunolabelling in permeabilised fixed cells. We propose that ON binds to p70 on M.hyorhinis attached at the cell surface, after which the complex is internalised by 'piggy-back' endocytosis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Endocitose , Mycoplasma , Oligonucleotídeos Antissenso/metabolismo , Receptores de Superfície Celular/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/química , Células HeLa , Humanos , Células Tumorais Cultivadas
10.
Nucleic Acids Res ; 30(7): 1512-21, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11917011

RESUMO

Having identified an oligonucleotide (ON) receptor in the HepG2 cell line, we have re-examined here the kinetics of ON uptake, subcellular distribution and intracellular localisation in these cells, at concentrations relevant for the study of a receptor-dependent process. Kinetic parameters of ON endocytosis were comparable with those of the receptor-mediated endocytosis tracer, transferrin (uptake equilibrium, saturation with concentration, specific competition and rapid efflux) and were clearly distinct from those of fluid-phase endocytosis. By analytical subcellular fractionation, particulate ON showed a bimodal distribution after 2 h of uptake, with a low-density peak superimposed on the distribution of endosomes, and a high-density peak overlapping lysosomes. After an overnight chase, only the high-density peak remained, but it could be dissociated from lysosomes, based on its refractoriness to displacement upon chloroquine-induced swelling. After 2 h of uptake at 300 nM ON-Alexa, a punctate pattern was resolved, by confocal microscopy, from those of transferrin, of a fluid-phase tracer, and of vital staining of lysosomes by LysoTracker. At 3 microM ON-Alexa, its pattern largely overlapped with the fluid-phase tracer and LysoTracker. Taken together, these data suggest that ON may be internalised at low concentrations by receptor-mediated endocytosis into unique endosomes, then to dense structures that are distinct from lysosomes. The nature of these two compartments and their significance for ON effect deserve further investigation.


Assuntos
Endocitose/fisiologia , Oligonucleotídeos/metabolismo , Receptores de Superfície Celular/fisiologia , Transporte Biológico , Fracionamento Químico , Humanos , Radioisótopos do Iodo , Cinética , Lisossomos/metabolismo , Microscopia Confocal , Frações Subcelulares , Células Tumorais Cultivadas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA