Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 173, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597967

RESUMO

Heterozygous mutations in any of three major genes, BRCA1, BRCA2 and PALB2, are associated with high-risk hereditary breast cancer susceptibility frequently seen as familial disease clustering. PALB2 is a key interaction partner and regulator of several vital cellular activities of BRCA1 and BRCA2, and is thus required for DNA damage repair and alleviation of replicative and oxidative stress. Little is however known about how PALB2-deficiency affects cell function beyond that, especially in the three-dimensional setting, and also about its role during early steps of malignancy development. To answer these questions, we have generated biologically relevant MCF10A mammary epithelial cell lines with mutations that are comparable to certain clinically important PALB2 defects. We show in a non-cancerous background how both mono- and biallelically PALB2-mutated cells exhibit gross spontaneous DNA damage and mitotic aberrations. Furthermore, PALB2-deficiency disturbs three-dimensional spheroid morphology, increases the migrational capacity and invasiveness of the cells, and broadly alters their transcriptome profiles. TGFß signaling and KRT14 expression are enhanced in PALB2-mutated cells and their inhibition and knock down, respectively, lead to partial restoration of cell functions. KRT14-positive cells are also more abundant with DNA damage than KRT14-negative cells. The obtained results indicate comprehensive cellular changes upon PALB2 mutations, even in the presence of half dosage of wild type PALB2 and demonstrate how PALB2 mutations may predispose their carriers to malignancy.


Assuntos
Neoplasias , Transdução de Sinais , Humanos , Reparo do DNA , Células Epiteliais , Mama , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética
2.
Angiogenesis ; 25(2): 259-274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34997404

RESUMO

Hypoxia plays an important regulatory role in the vasculature to adjust blood flow to meet metabolic requirements. At the level of gene transcription, the responses are mediated by hypoxia-inducible factor (HIF) the stability of which is controlled by the HIF prolyl 4-hydroxylase-2 (PHD2). In the lungs hypoxia results in vasoconstriction, however, the pathophysiological relevance of PHD2 in the major arterial cell types; endothelial cells (ECs) and arterial smooth muscle cells (aSMCs) in the adult vasculature is incompletely characterized. Here, we investigated PHD2-dependent vascular homeostasis utilizing inducible deletions of PHD2 either in ECs (Phd2∆ECi) or in aSMCs (Phd2∆aSMC). Cardiovascular function and lung pathologies were studied using echocardiography, Doppler ultrasonography, intraventricular pressure measurement, histological, ultrastructural, and transcriptional methods. Cell intrinsic responses were investigated in hypoxia and in conditions mimicking hypertension-induced hemodynamic stress. Phd2∆ECi resulted in progressive pulmonary disease characterized by a thickened respiratory basement membrane (BM), alveolar fibrosis, increased pulmonary artery pressure, and adaptive hypertrophy of the right ventricle (RV). A low oxygen environment resulted in alterations in cultured ECs similar to those in Phd2∆ECi mice, involving BM components and vascular tone regulators favoring the contraction of SMCs. In contrast, Phd2∆aSMC resulted in elevated RV pressure without alterations in vascular tone regulators. Mechanistically, PHD2 inhibition in aSMCs involved  actin polymerization -related tension development via activated cofilin. The results also indicated that hemodynamic stress, rather than PHD2-dependent hypoxia response alone, potentiates structural remodeling of the extracellular matrix in the pulmonary microvasculature and respiratory failure.


Assuntos
Hipertensão Pulmonar , Animais , Artérias/metabolismo , Células Endoteliais/metabolismo , Fibrose , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Miócitos de Músculo Liso/patologia , Prolil Hidroxilases/metabolismo
3.
Basic Clin Pharmacol Toxicol ; 123 Suppl 5: 6-19, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29668117

RESUMO

Vascular anomalies are localized defects of morphogenesis that can affect lymphatic and blood vessels. They are generally called birthmarks, typically observed soon after birth and occurring in up to 10% of children. Based on their clinical and histological characteristics, they are classified into vascular tumours and vascular malformations. The most common malformations are venous malformations (VMs) resulting in chronic vascular diseases that can be associated with significant morbidity necessitating often demanding and repeating clinical management. The current treatment is based on surgical resection and sclerotherapy, which can be impossible due to the size or location of lesions or ineffective due to the regrowth of malformed vessels. Therefore, medical therapies for VMs are highly desired. Recent studies have identified genetic defects that result in the constantly active endothelial cell receptor tyrosine kinase TIE2/phosphoinositide 3-kinase PI3K signalling pathway as a frequent cause for VMs. The first treatment to inhibit this pathway with sirolimus indicated that molecular treatment can be effective against VMs. In addition, certain VM 'hotspot' mutations have been previously found in tumours, providing the rationale for the exploration and repurposing of existing and investigational cancer drugs for VMs. Finally, discoveries of molecular and cellular abnormalities that characterize a large proportion of VMs and the generation of pre-clinical VM mouse models provide the necessary basis for the development of the targeted molecular treatment strategies we discuss in this MiniReview.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Doenças Vasculares/prevenção & controle , Malformações Vasculares/tratamento farmacológico , Veias/anormalidades , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Doença Crônica/prevenção & controle , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Humanos , Terapia de Alvo Molecular/métodos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptor TIE-2/antagonistas & inibidores , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Doenças Vasculares/etiologia , Malformações Vasculares/complicações , Malformações Vasculares/genética
4.
J Invest Dermatol ; 137(1): 207-216, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27519652

RESUMO

Blue rubber bleb nevus syndrome (Bean syndrome) is a rare, severe disorder of unknown cause, characterized by numerous cutaneous and internal venous malformations; gastrointestinal lesions are pathognomonic. We discovered somatic mutations in TEK, the gene encoding TIE2, in 15 of 17 individuals with blue rubber bleb nevus syndrome. Somatic mutations were also identified in five of six individuals with sporadically occurring multifocal venous malformations. In contrast to common unifocal venous malformation, which is most often caused by the somatic L914F TIE2 mutation, multifocal forms are predominantly caused by double (cis) mutations, that is, two somatic mutations on the same allele of the gene. Mutations are identical in all lesions from a given individual. T1105N-T1106P is recurrent in blue rubber bleb nevus, whereas Y897C-R915C is recurrent in sporadically occurring multifocal venous malformation: both cause ligand-independent activation of TIE2, and increase survival, invasion, and colony formation when expressed in human umbilical vein endothelial cells.


Assuntos
Neoplasias Gastrointestinais/genética , Predisposição Genética para Doença/epidemiologia , Mutação , Nevo Azul/genética , Receptor TIE-2/genética , Neoplasias Cutâneas/genética , Malformações Vasculares/genética , Bélgica , Estudos de Coortes , Feminino , Neoplasias Gastrointestinais/diagnóstico , Humanos , Incidência , Masculino , Nevo Azul/diagnóstico , Doenças Raras , Neoplasias Cutâneas/diagnóstico , Malformações Vasculares/diagnóstico
5.
J Clin Invest ; 125(9): 3491-504, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26258417

RESUMO

Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F-expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F-expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult-to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation.


Assuntos
Imunossupressores/administração & dosagem , Mutação de Sentido Incorreto , Receptor TIE-2 , Transdução de Sinais , Sirolimo/administração & dosagem , Malformações Vasculares , Adolescente , Adulto , Animais , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Projetos Piloto , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Malformações Vasculares/tratamento farmacológico , Malformações Vasculares/genética , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia , Veias
6.
Hum Mol Genet ; 22(17): 3438-48, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23633549

RESUMO

Mutations in the endothelial cell (EC) tyrosine kinase receptor TIE2 cause inherited and sporadic forms of venous malformation. The recurrent somatic mutation L914F and common germline mutation R849W differ in terms of phosphorylation level, as well as sub-cellular localization and trafficking of the receptor. Previous studies have shed light on certain pathogenic properties of R849W, but the mechanisms of action of L914F are unknown. We used global gene expression profiling to study the effects of L914F on ECs. We found that L914F strongly dysregulates genes involved in vascular development, cell migration and extracellular matrix processing, while R849W has weak effects. We also demonstrate, for the first time, that TIE2-mutant ECs are deficient in the production of PDGFB, both in vitro and ex vivo in patient tissues. This defect is mediated by the chronic, ligand-independent activation of AKT by the mutant receptors. Inadequate secretion of the major mural cell attractant likely plays an important role in the development of abnormal vascular channels, contributing to the characteristic paucity of surrounding vascular smooth muscle cells.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Malformações Vasculares/genética , Malformações Vasculares/metabolismo , Movimento Celular/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Músculo Liso Vascular/metabolismo , Fosforilação , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA