Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 158: 11-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33137420

RESUMO

Development of peptide therapeutics generally involves screening of excipients that inhibit peptide-peptide interactions, hence aggregation, and improve peptide stability. We used the therapeutic peptide plectasin to develop a fast screening method that combines microscale thermophoresis titration assays and molecular dynamics simulations to relatively rank the excipients with respect to binding affinity and to study key peptide-excipient interaction hotspots on a molecular level, respectively. Additionally, 1H-13C-HSQC NMR titration experiments were performed to validate the fast screening approach. The NMR results are in qualitative agreement with results from the fast screening method demonstrating that this approach can be reliably applied to other peptides and proteins as a fast screening method to relatively rank excipients and predict possible excipient binding sites.


Assuntos
Anti-Infecciosos/química , Composição de Medicamentos/métodos , Excipientes/química , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/química , Anti-Infecciosos/uso terapêutico , Humanos , Infecções/tratamento farmacológico , Simulação de Dinâmica Molecular , Peptídeos/uso terapêutico , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes
2.
J Phys Chem B ; 123(23): 4867-4877, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31099578

RESUMO

Plectasin is a small, cysteine-rich peptide antibiotic which belongs to the class of antimicrobial peptides and has potential antibacterial activity against various Gram-positive bacteria. In the current study, the effect of pH and ionic strength (NaCl) on the conformational stability of plectasin variants has been investigated. At all physiochemical conditions, peptide secondary structures are intact throughout simulations. However, flexibility increases with pH because of the change in electrostatics around the distinct anionic tetrapeptide (9-12) stretch. Furthermore, plectasin interactions with NaCl were measured by determining the preferential interaction coefficients, Γ23. Generally, wild-type plectasin has higher preference for sodium ions as 9ASP is mutated in other variants. Overall, the Γ23 trend with pH for the two salt conditions remain the same for all variants predominately having accumulation of sodium ions around 10GLU and 12ASP. Insignificant changes in the overall peptide conformational stability are in agreement with the fact that plectasin has three cystines. Thermodynamic integration molecular dynamics simulations supplemented with nuclear magnetic resonance were employed to determine the degree of involvement of three different cystines to the overall structural integrity of the peptide. Both methods show the same order of cystine reduction and complete unfolding is observed only upon reduction of all cystines.


Assuntos
Antibacterianos/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA