Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 98(7): 4509-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25935242

RESUMO

Periparturient dairy cows experience metabolic challenges that result in a negative energy balance (EB) and a range of postpartum health problems. To compensate for the negative EB, cows mobilize fatty acids from adipose tissues, which can lead to fatty liver disease, a periparturient metabolic disorder. Flavonoids, such as quercetin (Q), are polyphenolic substances found in all higher plants and have hepatoprotective potential and the ability to prevent or reduce lipid accumulation in the liver. In ruminants, few studies on the metabolic effects of Q are available, and thus this study was conducted to determine whether Q has beneficial effects on EB, lipid metabolism, and hepatoprotective effects in periparturient dairy cows. Quercetin was supplemented intraduodenally to circumvent Q degradation in the rumen. Cows (n=10) with duodenal fistulas were monitored for 7wk. Beginning 3wk before expected calving, 5 cows were treated with 100mg of quercetin dihydrate per kilogram of body weight daily in a 0.9% sodium chloride solution for a total period of 6wk, whereas the control cows received only the sodium chloride solution. The plasma flavonoid levels were higher in the Q-treated cows than in the control cows. A tendency for higher postpartum (pp) than antepartum (ap) plasma flavonoid levels was observed in the Q-treated cows than in the controls, which was potentially caused by a reduced capacity to metabolize Q. However, the metabolic status of the Q-treated cows did not differ from that of the control cows. The pp increases in plasma aspartate aminotransferase and glutamate dehydrogenase activities were less in the Q-treated cows than in the control cows. The Q had no effect on energy expenditures, but from ap to pp the cows had a slight decline in respiratory quotients. Irrespective of the treatment group, the oxidation of fat peaked after calving, suggesting that the increase occurred because of an increased supply of fatty acids from lipomobilization. In conclusion, supplementation with Q resulted in lower pp plasma aminotransferase and glutamate dehydrogenase, which indicated reduced liver damage. However, the direct effects of Q on the liver and the implications for animal performance remain to be investigated.


Assuntos
Antioxidantes/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Hepatopatias/veterinária , Complicações na Gravidez/veterinária , Quercetina/administração & dosagem , Animais , Bovinos , Suplementos Nutricionais , Duodeno/efeitos dos fármacos , Ácidos Graxos/metabolismo , Feminino , Flavonoides/sangue , Lactação , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatias/prevenção & controle , Leite/metabolismo , Período Periparto , Período Pós-Parto , Gravidez , Complicações na Gravidez/prevenção & controle , Rúmen/metabolismo
2.
Anim Reprod Sci ; 157: 39-43, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25882649

RESUMO

The interval from calving to commencement of luteal activity (CLA) was determined by progesterone measurements from milk samples obtained once a week until the 14th week post-partum in 513 German Holstein cows in first to third parity. Milk samples were analyzed by an "on-farm" device (eProCheck(®), Minitüb, Germany) and simultaneously by RIA. The objective of this study was to examine the effect of milk yield, protein content and body condition of a cow on the CLA post-partum. Milk progesterone concentrations of "on-farm" measurements correlated with measurements done by the RIA-method significantly (r=0.72; P<0.001). Within the analyzed herd the interval from calving until the first rise of progesterone averaged 5.6±2.4 weeks. The 100-days milk yield was not associated with CLA. Cows with a milk protein content at 1st milk recording of ≤3.5% revealed first luteal activity 1.3±0.3 weeks later than cows that had a content of >3.75% protein (P<0.01). Furthermore cows with assisted calving or dystocia presented significantly later CLA than cows which required no help during the calving process (P<0.05). The change in back fat thickness from 1st to 2nd milk recording had a significant influence on CLA (P<0.05). In conclusion the phenotypic impact of milk yield on fertility cannot be confirmed regarding to CLA. The negative energy balance after calving, caused by the high milk yields, is more detrimental for the cyclical activity as was shown by the parameters milk protein content and change in BFT.


Assuntos
Composição Corporal , Bovinos/fisiologia , Corpo Lúteo/fisiologia , Animais , Doenças dos Bovinos/metabolismo , Distocia/veterinária , Feminino , Lactação , Leite/química , Paridade , Gravidez , Progesterona/química , Progesterona/metabolismo
3.
Vet Res ; 40(4): 31, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19321125

RESUMO

We examined the repertoire and extent of inflammation dependent gene regulation in a bovine mammary epithelial cell (MEC) model, to better understand the contribution of the MEC in the immune defence of the udder. We challenged primary cultures of MEC from cows with heat inactivated Escherichia coli pathogens and used Affymetrix DNA-microarrays to profile challenge related alterations in their transcriptome. Compared to acute mastitis, the most prominently activated genes comprise those encoding chemokines, interleukins, beta-defensins, serum amyloid A and haptoglobin. Hence, the MEC exert sentinel as well as effector functions of innate immune defence. E. coli stimulated a larger fraction of genes (30%) in the MEC belonging to the functional category Inflammatory Response than we recorded with the same microarrays during acute mastitis in the udder (17%). This observation underscores the exquisite immune capacity of MEC. To more closely examine the adequacy of immunological regulation in MEC, we compared the inflammation dependent regulation of factors contributing to the complement system between the udder versus the MEC. In the MEC we observed only up regulation of several complement factor-encoding genes. Mastitis, in contrast, in the udder strongly down regulates such genes encoding factors contributing to both, the classical pathway of complement activation and the Membrane Attack Complex, while the expression of factors contributing to the alternative pathway may be enhanced. This functionally polarized regulation of the complex complement pathway is not reflected in the MEC models.


Assuntos
Células Epiteliais/imunologia , Infecções por Escherichia coli/veterinária , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/imunologia , Mastite Bovina/imunologia , Animais , Bovinos , Células Epiteliais/microbiologia , Infecções por Escherichia coli/imunologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Agric Food Chem ; 57(3): 852-7, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19152264

RESUMO

This study was conducted to investigate whether the isoflavones genistein and daidzein, which are components of soy-based diets, and the estrogen 17beta-estradiol affect differentiation and protein metabolism of porcine skeletal muscle cells in vitro. Serum-free porcine myotube cultures expressing the estrogen receptors ERalpha and ERbeta were treated with various concentrations of genistein, daidzein, or 17beta-estradiol for 26 h. The degree of differentiation by creatine phosphokinase activity was not altered by treatment. At 100 micromol/L both genistein and daidzein caused decreases in protein amount due to cell loss. In addition, 100 micromol/L genistein reduced protein synthesis rate of the surviving cells (P < 0.05) measured as [3H]-phenylalanine incorporation. Interestingly, genistein (0.1 micromol/L), daidzein (10, 100 micromol/L), and 17beta-estradiol (0.1, 1 nmol/L) slightly reduced protein degradation (P < 0.05). The results suggest that both genistein and daidzein affect protein metabolism in a dose-dependent manner and that estrogenic actions may play a role in decreasing protein degradation in porcine skeletal muscle.


Assuntos
Genisteína/administração & dosagem , Isoflavonas/administração & dosagem , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Relação Dose-Resposta a Droga , Estradiol/administração & dosagem , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/efeitos dos fármacos , Suínos
5.
Domest Anim Endocrinol ; 35(3): 281-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18635334

RESUMO

Soy-derived isoflavones have been reported to be specific inhibitors of protein tyrosine kinases like the type 1 insulin-like growth factor receptor (IGF-1R) and the epidermal growth factor receptor (EGFR). This study was conducted to investigate, whether IGF-I and EGF stimulate porcine myoblast growth and whether the responses are influenced by isoflavones. Satellite cell-born myoblasts derived from the semimembranosus muscle of newborn piglets were treated for 26 h with IGF-I or EGF alone and in combination with genistein or daidzein. The DNA amount was measured and DNA synthesis was recorded as 6 h-[(3)H]thymidine incorporation during exponential growth in serum-free basal medium. IGF-I and EGF synergistically stimulated DNA synthesis of porcine myoblast with EGF causing a greater response. Genistein (100 micromol/l) effectively reduced the growth factor-mediated DNA synthesis, which was associated with an inhibition of growth factor receptor protein expression. In response to daidzein no reduction in growth factor-mediated DNA synthesis was found. Daidzein (1; 10 micromol/l) combined with IGF-I caused even a slight increase in DNA amount compared with the untreated control. The expression of the IGF-1R precursor protein was reduced with 10 and 100 micromol/l daidzein, whereas the EGFR expression remained unchanged with daidzein. The results suggest that dietary isoflavones may interact with growth factor-induced stimulation of pig skeletal muscle growth.


Assuntos
DNA/biossíntese , Fator de Crescimento Epidérmico/farmacologia , Genisteína/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Isoflavonas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Suínos/fisiologia , Animais , Animais Recém-Nascidos , Receptores ErbB/metabolismo , Feminino , Imuno-Histoquímica/veterinária , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Receptor IGF Tipo 1/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Timidina/metabolismo
6.
Pediatr Res ; 63(1): 39-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18043503

RESUMO

Soy-based formulas are consumed by growing numbers of infants and used as regular food supplements in livestock production. Moreover, constituent dietary phytoestrogens may compete with endogenous estrogens and affect individual growth. This study aimed to investigate the in vitro effects of isoflavones in comparison with estrogens on the proliferation of porcine satellite cells derived from neonatal muscle. After 7 h of exposure in serum-free medium, 17beta-estradiol (1 nM, 1 microM), estrone (1 microM), and daidzein (1, 100 microM) slightly decreased whereas 100 microM genistein substantially lowered DNA synthesis. Declines in DNA amount were observed with genistein (1, 100 microM) and daidzein (100 microM). After 26 h of exposure, 100 microM genistein reduced DNA synthesis, whereas it was increased by 10 microM genistein and 10 and 100 microM daidzein. In the case of 10 microM genistein and 100 microM daidzein, these increases apparently resulted from the repair of damaged DNA. Genistein and daidzein (100 microM) reduced protein synthesis, caused a G2/M phase block, and decreased DNA amount in association with higher rates of cell death partially resulting from apoptosis. Conclusively, isoflavones at concentrations of greater than 1 muM act as inhibitors of porcine skeletal muscle cell proliferation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Estradiol/metabolismo , Estrona/metabolismo , Genisteína/farmacologia , Isoflavonas/farmacologia , Mioblastos Esqueléticos/efeitos dos fármacos , Fitoestrógenos/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Mioblastos Esqueléticos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Suínos , Fatores de Tempo
7.
Theriogenology ; 63(4): 1220-34, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15710205

RESUMO

This study was conducted to examine stress-induced effects on gene expression of specific markers for HPA axis and neuronal activity in fetuses and neonatal pigs. Brain, pituitary gland, and adrenal gland were obtained to determine the mRNA levels for corticotropin-releasing hormone (CRH), CRH receptor 1 (CRHR1), pro-opiomelanocortin (POMC), ACTH receptor (MC2R), c-jun and c-fos. The suitability of these molecular markers was determined in neonatal pigs which were maternally deprived for two hours. It was found that maternal deprivation caused significantly higher transcript levels of c-fos and CRH in brain accompanied by a down-regulation of CRHR1 mRNA and an up-regulation of c-jun in the pituitary gland. To determine the effect of elevated maternal cortisol levels on gene expression of these molecular markers in fetuses, pregnant sows were treated with 100 IU ACTH (Synacthen Depot) s.c. every two days between Day 49 and Day 75 of gestation (normal gestation length 114 days). Animals were killed 48 hours after the last ACTH administration and fetuses of each sow were isolated. The ACTH treatment of sows significantly increased mRNA expression of c-fos but not of CRH in the fetal brain, and significantly decreased MC2R mRNA expression in the adrenal gland. However, HPA axis seems not to be fully developed in Day 77-fetuses because fetal pituitary CRHR1 and POMC mRNA expression was low in most of the fetuses. Although the expression of endocrine regulatory factors was partially incomplete in fetuses at the beginning of the third-trimester, ACTH dependent activation of c-fos mRNA in brain indicates a stress-related increase of neuronal activity. Based on these results it is assumed that prenatal stress in pigs may also have effects on the activity of the HPA axis in the offspring.


Assuntos
Glândulas Suprarrenais/química , Animais Recém-Nascidos , Química Encefálica , Feto , Estresse Fisiológico/veterinária , Doenças dos Suínos/genética , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/crescimento & desenvolvimento , Hormônio Adrenocorticotrópico , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Hormônio Liberador da Corticotropina/genética , Feminino , Expressão Gênica , Genes fos/genética , Genes jun/genética , Hidrocortisona/fisiologia , Hipófise/química , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Gravidez , Pró-Opiomelanocortina/genética , RNA Mensageiro/análise , Receptores da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/genética , Estresse Fisiológico/genética , Suínos
8.
J Muscle Res Cell Motil ; 24(8): 521-6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14870967

RESUMO

Objective of the study was to investigate growth characteristics and susceptibility to apoptosis in different murine muscle cell lines (selected for high body weight, DU-6; randomly mated control, DU-Ks; immortalized myoblast cell line, C2C12). Apoptosis was induced by serum deprivation. At days 4, 5, and 6 of cultivation, protein, DNA and the frequency of apoptotic cells were determined. Until day 4, C2C12 accumulated more DNA and protein compared with DU-Ks and DU-6, while exhibiting a lower percentage of apoptotic cells. Serum deprivation impaired the growth of each cell line. C2C12 continued to accumulate DNA and protein after serum deprivation, whereas reductions, indicative of cell death, were apparent in DU-Ks and DU-6. Serum deprivation did not enhance apoptosis in C2C12. Higher percentages of apoptosis were observed in DU-Ks and DU-6 after 2 days of serum deprivation with greater responsiveness of DU-6 to serum deprivation. The results suggest that cell loss in response to serum deprivation is in part due to induction of apoptosis. C2C12 are less sensitive to sub-optimal culture conditions compared with DU-Ks and DU-6 which are at a closer distance to the in vivo status. Moreover, long-term selection for growth decreases the basic frequency of apoptosis of muscle satellite cells, but increases their susceptibility to apoptosis induction.


Assuntos
Apoptose/fisiologia , Divisão Celular/fisiologia , Células Musculares/metabolismo , Animais , Peso Corporal/fisiologia , Transformação Celular Neoplásica , Células Cultivadas , Meios de Cultura Livres de Soro/química , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA