Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 42(6): 915-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25838237

RESUMO

Overexpression of phosphoenolpyruvate carboxykinase (PCK) was reported to cause the harboring of higher intracellular ATP concentration in Escherichia coli, accompanied with a slower growth rate. For systematic determination of the relationship between the artificial increase of ATP and growth retardation, PCKWT enzyme was directly evolved in vitro and further overexpressed. The evolved PCK67 showed a 60% greater catalytic efficiency than that of PCKWT. Consequently, the PCK67-overexpressing E. coli showed the highest ATP concentration at the log phase of 1.45 µmol/gcell, with the slowest growth rate of 0.66 h(-1), while the PCKWT-overexpressing cells displayed 1.00 µmol/gcell ATP concentration with the growth rate of 0.84 h(-1) and the control had 0.28 µmol/gcell with 1.03 h(-1). To find a plausible reason, PCK-overexpressing cells in a steady state during chemostat growth were applied to monitor intracellular reactive oxygen species (ROS). Higher amount of intracellular ROS were observed as the ATP levels increased. To confirm the hypothesis of slower growth rate without perturbation of the carbon flux by PCK-overexpression, phototrophic Gloeobacter rhodopsin (GR) was expressed. The GR-expressing strain under illumination harbored 81% more ATP concentration along with 82% higher ROS, with a 54% slower maximum growth rate than the control, while both the GR-expressing strain under dark and dicarboxylate transporter (a control membrane protein)-expressing strain showed a lower ATP and increased ROS, and slower growth rate. Regardless of carbon flux changes, the artificial ATP increase was related to the ROS increase and it was reciprocally correlated to the maximum growth rate. To verify that the accumulated intracellular ROS were responsible for the growth retardation, glutathione was added to the medium to reduce the ROS. As a result, the growth retardation was restored by the addition of 0.1 mM glutathione. Anaerobic culture even enabled the artificial ATP-increased E. coli to grow faster than control. Collectively, it was concluded that artificial ATP increases inhibit the growth of E. coli due to the overproduction of ROS.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Anaerobiose , Biocatálise/efeitos dos fármacos , Ciclo do Carbono , Cianobactérias/genética , Cianobactérias/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/farmacologia , Fosfoenolpiruvato Carboxilase/genética , Fosfoenolpiruvato Carboxilase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodopsina/metabolismo
2.
Enzyme Microb Technol ; 53(1): 13-7, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23683699

RESUMO

We have previously reported that phosphoenolpyruvate carboxykinase (PCK) overexpression under glycolytic conditions enables Escherichia coli to harbor a high intracellular ATP pool resulting in enhanced recombinant protein synthesis. To estimate how much PCK-mediated phosphoenolpyruvate (PEP) carboxylation is contributed to the ATP increase under engineered conditions, the kinetics of PEP carboxylation by PCK and substrate competing phosphoenolpyruvate carboxylase (PPC) were measured using recombinant enzymes. The PEP carboxylation catalytic efficiency (kcat/Km) of the recombinant PCK was 660mM(-1)min(-1), whereas that of the recombinant PPC was 1500mM(-1)min(-1). Under the presence of known allosteric effectors (fructose 1,6-bisphosphate, acetyl-CoA, ATP, malate, and aspartate) close to in vivo conditions, the catalytic efficiency of PCK-mediated PEP carboxylation (84mM(-1)min(-1)) was 28-folds lower than that of PPC (2370mM(-1)min(-1)). To verify the above results, an E. coli strain expressing native PCK and PPC under control of identical promoter was constructed by replacing PCK promoter region with that of PPC in chromosome. The native PCK activity (33nmol/mg-proteinmin) was 5-folds lower than PPC activity (160nmol/mg-proteinmin) in the cell extract from the promoter-exchanged strain. Intracellular modifications of ATP concentration by PCK activity and the consequences for biotechnology are further discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli/enzimologia , Engenharia Genética/métodos , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Biotecnologia/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxilase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA