Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Med Oncol ; 40(12): 344, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921869

RESUMO

Glucosinolates are naturally occurring ß-d-thioglucosides that mainly exist in the Brassicaceae family. The enzyme myrosinase hydrolyzes glucosinolates to form isothiocyanates, which are chemical protectors. Phenethyl isothiocyanate, sulforaphane, and benzyl isothiocyanate are potential isothiocyanate with efficient anti-cancer effects as a protective or treatment agent. Glucosinolate metabolites exert the cancer-preventive activity through different mechanisms, including induction of the Nrf2 transcription factor, inhibition of expression of tumor necrosis factor-α (TNFα) and interleukin-1ß (IL-1ß), induction of apoptosis through inhibiting phase I enzymes and inducting phase II enzymes, interruption of caspase pathways, STAT1/STAT2, inhibition of sulfotransferases. Moreover, glucosinolates and their metabolites are effective in cancer treatment by inhibiting angiogenesis, upregulating natural killers, increasing expression of p53, p21, caspase 3 and 9, and modulating NF-κB. Despite the mentioned cancer-preventing effects, some isothiocyanates can increase the risk of tumors. So, further studies are needed to obtain an accurate and effective dose for each glucosinolates to treat different types of tumors.


Assuntos
Brassica , Neoplasias , Humanos , Brassica/metabolismo , Glucosinolatos/farmacologia , Glucosinolatos/uso terapêutico , Glucosinolatos/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , NF-kappa B/metabolismo
2.
Eur J Med Chem ; 260: 115765, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659194

RESUMO

Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.


Assuntos
Descoberta de Drogas , Processamento de Proteína Pós-Traducional , Proteólise , Fosforilação , Ubiquitinação , Quimera de Direcionamento de Proteólise
3.
RSC Adv ; 13(32): 22250-22267, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37492509

RESUMO

Curcumin-loaded mesoporous silica nanoparticles (MSNs) have shown promise as drug delivery systems to address the limited pharmacokinetic characteristics of curcumin. Functionalization with folic acid and PEGylation enhance anticancer activity, biocompatibility, stability, and permeability. Co-delivery with other drugs results in synergistically enhanced cytotoxic activity. Environment-responsive MSNs prevent undesirable drug leakage and increase selectivity towards target tissues. This review summarizes the methods of Cur-loaded MSN synthesis and functionalization and their application in various diseases, and also highlights the potential of Cur-loaded MSNs as a promising drug delivery system.

4.
Expert Rev Mol Med ; 25: e18, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154101

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most frequent type of primary brain cancer, having a median survival of only 15 months. The current standard of care includes a combination of surgery, radiotherapy (RT) and chemotherapy with temozolomide, but with limited results. Moreover, multiple studies have shown that tumour relapse and resistance to classic therapeutic approaches are common events that occur in the majority of patients, and eventually leading to death. New approaches to better understand the intricated tumour biology involved in GBM are needed in order to develop personalised treatment approaches. Advances in cancer biology have widen our understanding over the GBM genome and allowing a better classification of these tumours based on their molecular profile. METHODS: A new targeted therapeutic approach that is currently investigated in multiple clinical trials in GBM is represented by molecules that target various defects in the DNA damage repair (DDR) pathway, a mechanism activated by endogenous and exogenous factors that induce alteration of DNA, and is involved for the development of chemotherapy and RT resistance. This intricate pathway is regulated by p53, two important kinases ATR and ATM and non-coding RNAs including microRNAs, long-non-coding RNAs and circular RNAs that regulate the expression of all the proteins involved in the pathway. RESULTS: Currently, the most studied DDR inhibitors are represented by PARP inhibitors (PARPi) with important results in ovarian and breast cancer. PARPi are a class of tumour agnostic drugs that showed their efficacy also in other localisations such as colon and prostate tumours that have a molecular signature associated with genomic instability. These inhibitors induce the accumulation of intracellular DNA damage, cell cycle arrest, mitotic catastrophe and apoptosis. CONCLUSIONS: This study aims to provide an integrated image of the DDR pathway in glioblastoma under physiological and treatment pressure with a focus of the regulatory roles of ncRNAs. The DDR inhibitors are emerging as an important new therapeutic approach for tumours with genomic instability and alterations in DDR pathways. The first clinical trials with PARPi in GBM are currently ongoing and will be presented in the article. Moreover, we consider that by incorporating the regulatory network in the DDR pathway in GBM we can fill the missing gaps that limited previous attempts to effectively target it in brain tumours. An overview of the importance of ncRNAs in GBM and DDR physiology and how they are interconnected is presented.


Assuntos
Glioblastoma , Masculino , Humanos , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Dano ao DNA , RNA não Traduzido/genética , Biomarcadores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Instabilidade Genômica , DNA , Reparo do DNA/genética
5.
Eur J Pharmacol ; 949: 175699, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011722

RESUMO

Colorectal cancer (CRC) is the third most common cancer and the leading cause of gastrointestinal cancer death. 90% of people diagnosed with colorectal cancer are over the age of 50; nevertheless, the illness is more aggressive among those detected at a younger age. Chemotherapy-based treatment has several adverse effects on both normal and malignant cells. The primary signaling pathways implicated in the advancement of CRC include hedgehog (Hh), janus kinase and signal transducer and activator of transcription (JAK/STAT), Wingless-related integration site (Wnt)/ß-catenin, transforming growth factor-ß (TNF-ß), epidermal growth factor receptor (EGFR)/Mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), nuclear factor kappa B (NF-κB), and Notch. Loss of heterozygosity in tumor suppressor genes like adenomatous polyposis coli, as well as mutation or deletion of genes like p53 and Kirsten rat sarcoma viral oncogene (KRAS), are all responsible for the occurrence of CRC. Novel therapeutic targets linked to these signal-transduction cascades have been identified as a consequence of advances in small interfering RNA (siRNA) treatments. This study focuses on many innovative siRNA therapies and methodologies for delivering siRNA therapeutics to the malignant site safely and effectively for the treatment of CRC. Treatment of CRC using siRNA-associated nanoparticles (NPs) may inhibit the activity of oncogenes and MDR-related genes by targeting a range of signaling mechanisms. This study summarizes several siRNAs targeting signaling molecules, as well as the therapeutic approaches that might be employed to treat CRC in the future.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Humanos , RNA Interferente Pequeno/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Hedgehog , Transdução de Sinais , Receptores ErbB/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
6.
Curr Med Chem ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36896902

RESUMO

BACKGROUND: Dihydrofolate reductase (DHFR) is an indispensable enzyme required for the survival of most prokaryotic and eukaryotic cells as it is involved in the biosynthesis of essential cellular components. DHFR has attracted a lot of attention as a molecular target for various diseases like cancer, bacterial infection, malaria, tuberculosis, dental caries, trypanosomiasis, leishmaniasis, fungal infection, influenza, Buruli ulcer, and respiratory illness. Various teams of researchers have reported different DHFR inhibitors to explore their therapeutic efficacy. Despite all the progress made, there is a strong need to find more novel leading structures, which may be used as better and safe DHFR inhibitors, especially against the microorganisms which are resistant to the developed drug candidates. OBJECTIVE: This review aims to pay attention to recent development, particularly made in the past two decades and published in this field, and pay particular attention to promising DHFR inhibitors. Hence, an attempt has been made in this article to highlight the structure of dihydrofolate reductase, the mechanism of action of DHFR inhibitors, most recently reported DHFR inhibitors, diverse pharmacological applications of DHFR inhibitors, reported in-silico study data and recent patents based on DHFR inhibitors to comprehensively portray the current scenery for researchers interested in designing novel DHFR inhibitors. CONCLUSION: A critical review of recent studies revealed that most novel DHFR inhibitor compounds either synthetically or naturally derived are characterized by the presence of heterocyclic moieties in their structure. Non-classical antifolates like trimethoprim, pyrimethamine, and proguanil are considered excellent templates to design novel DHFR inhibitors, and most of them have substituted 2,4-diamino pyrimidine motifs. Targeting DHFR has massive potential to be investigated for newer therapeutic possibilities to treat various diseases of clinical importance.

7.
Crit Rev Food Sci Nutr ; 63(14): 2093-2118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34553653

RESUMO

Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Polifenóis/farmacologia , Polifenóis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Endotélio Vascular , Óxido Nítrico
8.
Cancers (Basel) ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497321

RESUMO

Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.

9.
Expert Rev Mol Med ; 25: e1, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36511134

RESUMO

The human oral cavity is comprised of dynamic and polynomial microbes which uniquely reside in the microenvironments of oral cavities. The cumulative functions of the symbiotic microbial communities maintain normal homeostasis; however, a shifted microbiota yields a dysbiosis state, which produces local and systemic diseases including dental caries, periodontitis, cancer, obesity and diabetes. Recent research reports claim that an association occurs between oral dysbiosis and the progression of different types of cancers including oral, gastric and pancreatic ones. Different mechanisms are proposed for the development of cancer, such as induction of inflammatory reactions, production of carcinogenic materials and alteration of the immune system. Medications are available to treat these associated diseases; however, the current strategies may further worsen the disease by unwanted side effects. Natural-derived polyphenol molecules significantly inhibit a wide range of systemic diseases with fewer side effects. In this review, we have displayed the functions of the oral microbes and we have extended the report regarding the role of polyphenols in oral microbiota to maintain healthy conditions and prevention of diseases with emphasis on the treatment of oral microbiota-associated cancer.


Assuntos
Cárie Dentária , Microbiota , Neoplasias Bucais , Humanos , Disbiose , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Cárie Dentária/prevenção & controle , Microambiente Tumoral
10.
Compr Rev Food Sci Food Saf ; 21(5): 4422-4446, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35904246

RESUMO

The growing interest in foods that can be beneficial to human health is bringing into focus some products that have been used locally for centuries but have recently gained worldwide attention. One of these foods is pumpkin seed oil, which has been used in culinary and traditional medicine, but recent data also show its use in the pharmaceutical and cosmetic industries. In addition, some sources refer to it as a potential functional food, mainly because it is obtained from pumpkin seeds, which contain many functional components. However, the production process of the oil may affect the content of these components and consequently the biological activity of the oil. In this review, we have focused on summarizing scientific data that explore the potential of pumpkin seed oil as a functional food ingredient. We provide a comprehensive overview of pumpkin seed oil chemical composition, phytochemical content, biological activity, and safety, as well as the overview of production processes and contemporary use. The main phytochemicals in pumpkin seed oil with health-related properties are polyphenols, phytoestrogens, and fatty acids, but carotenoids, squalene, tocopherols, and minerals may also contribute to health benefits. Most studies have been conducted in vitro and support the claim that pumpkin seed oil has antioxidant and antimicrobial activities. Clinical studies have shown that pumpkin seed oil may be beneficial in the treatment of cardiovascular problems of menopausal women and ailments associated with imbalance of sex hormones.


Assuntos
Anti-Infecciosos , Cucurbita , Ingredientes de Alimentos , Antioxidantes/farmacologia , Carotenoides , Cucurbita/química , Ácidos Graxos/química , Feminino , Alimento Funcional , Humanos , Preparações Farmacêuticas , Compostos Fitoquímicos , Fitoestrógenos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Polifenóis , Esqualeno , Tocoferóis
11.
Drug Chem Toxicol ; 45(1): 223-230, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31642336

RESUMO

The genus Tamarix includes several plant species well-known for their medicinal properties since ancient times. Tamarix stricta Boiss is a plant native to Iran which has not been previously investigated regarding its phytochemical and biological properties. This study assessed phytochemical and toxicological aspects of T. stricta. The plant was collected from Kerman province of Iran and after authentication by botanist, it was extracted with 70% ethanol. Total phenolic compounds, total flavonoids, and antioxidant properties were measured using spectrophometric methods. Quercetin content of the extract was measured after complete acid hydrolysis with high-performance liquid chromatography. The phytochemical profile of the extract was provided using liquid chromatography-mass spectrometry method. Acute toxicity study with a single intragastric dose of 5000 mg/kg of the extract and sub-chronic toxicity using 50, 100, and 250 mg/kg of the extract was assessed in Wistar rats. Phytochemical analysis showed that polyphenols constitute the major components of the extract. Also, the extract contained 1.552 ± 0.35 mg/g of quercetin. Biochemical, hematological, and histological evaluations showed no sign of toxicity in animals. Our experiment showed that T. stricta is a rich source of polyphenols and can be a safe medicinal plant. Further pharmacological evaluations are recommended to assess the therapeutic properties of this plant.


Assuntos
Tamaricaceae , Animais , Antioxidantes/toxicidade , Cromatografia Líquida de Alta Pressão , Flavonoides/análise , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/toxicidade , Polifenóis/toxicidade , Ratos , Ratos Wistar
12.
Semin Cancer Biol ; 80: 183-194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32428716

RESUMO

The current era of cancer research has been continuously advancing upon identifying novel aspects of tumorigenesis and the principal mechanisms behind the unleashed proliferation, invasion, drug resistance and immortality of cancer cells in hopes of exploiting these findings to achieve a more effective treatment for cancer. In pursuit of this goal, the identification of the first components of an extremely important regulatory pathway in Drosophila melanogaster that largely determines cell fate during the developmental stages, ended up in the discovery of the highly sophisticated Hippo signaling cascade. Soon after, it was revealed that deregulation of the components of this pathway either via mutations or through epigenetic alterations can be observed in a vast variety of tumors and these alterations greatly contribute to the neoplastic transformation of cells, their survival, growth and resistance to therapy. As more hidden aspects of this pathway such as its widespread entanglement with other major cellular signaling pathways are continuously being uncovered, many researchers have sought over the past decade to find ways of therapeutic interventions targeting the major components of the Hippo cascade. To date, various approaches such as the use of exogenous targeting miRNAs and different molecular inhibitors have been recruited herein, among which naturally occurring compounds have shown a great promise. On such a basis, in the present work we review the current understanding of Hippo pathway and the most recent evidence on targeting its components using natural plant-derived phytochemicals.


Assuntos
Drosophila melanogaster , Neoplasias , Animais , Transformação Celular Neoplásica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Via de Sinalização Hippo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Proteínas Serina-Treonina Quinases , Transdução de Sinais/genética
13.
Semin Cancer Biol ; 80: 218-236, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-32502598

RESUMO

Due to the high number of annual cancer-related deaths, and the economic burden that this malignancy affects today's society, the study of compounds isolated from natural sources should be encouraged. Most cancers are the result of a combined effect of lifestyle, environmental factors, and genetic and hereditary components. Recent literature reveals an increase in the interest for the study of phytochemicals from traditional medicine, this being a valuable resource for modern medicine to identify novel bioactive agents with potential medicinal applications. Phytochemicals are components of traditional medicine that are showing promising application in modern medicine due to their antitumor activities. Recent studies regarding two major mechanisms underlying cancer development and regulation, apoptosis and autophagy, have shown that the signaling pathways of both these processes are significantly interconnected through various mechanisms of crosstalk. Phytochemicals are able to activate pro-autophagic and pro-apoptosis mechanisms. Understanding the molecular mechanism involved in apoptosis-autophagy relationship modulated by phytochemicals plays a key role in development of a new therapeutic strategy for cancer treatment. The purpose of this review is to outline the bioactive properties of the natural phytochemicals with validated antitumor activity, focusing particularly on their role in the regulation of apoptosis and autophagy crosstalk that triggers the uncontrolled expansion of tumor cells. Furthermore, we have also critically discussed the limitations and challenges of existing research strategies and the prospective research directions in this field.


Assuntos
Autofagia , Neoplasias , Apoptose , Autofagia/fisiologia , Humanos , Neoplasias/patologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Estudos Prospectivos , Transdução de Sinais
14.
Biochimie ; 193: 38-63, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688789

RESUMO

The human digestive tract is the cottage to trillions of live microorganisms, which regulate health and illness. A healthy Gut Microbiota (GM) is necessary for preventing microbial growth, body growth, obesity, cancer, diabetes, and enhancing immunity. The equilibrium in GM's composition and the presence/absence of critical species enable specific responses to be essential for the host's better health condition. Research evidences revealed that the dietary plants and their bioactive phytochemicals (BPs) play an extensive and critical role in shaping the GM to get beneficial health effects. BPs are also known to improve gastrointestinal health and reduce the risk of several diseases by modulating GM-mediated cellular and molecular processes. Regular intake of BPs-rich vegetables, fruits, and herbal preparations promotes probiotic bacteria, including Bifidobacteria and Lactobacillus species, while inhibiting unwanted gut residents' development Escherichia coli, and Salmonella typhimurium etc. Upon consumption, BPs contact the GM that gets transformed before being absorbed from the gastrointestinal tract. Biotransformation of BPs by GM is linked with the enhancement of bioactivity/toxicity diminishment of the BPs compared to parental phytochemicals. Therefore, the current review focuses on the role of BPs in shaping GM for the prevention and treatment of human diseases.


Assuntos
Diabetes Mellitus , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Neoplasias , Obesidade , Compostos Fitoquímicos/uso terapêutico , Probióticos/uso terapêutico , Diabetes Mellitus/microbiologia , Diabetes Mellitus/prevenção & controle , Humanos , Neoplasias/microbiologia , Neoplasias/prevenção & controle , Obesidade/microbiologia , Obesidade/prevenção & controle , Polifenóis/uso terapêutico
15.
Nat Prod Res ; 36(16): 4205-4209, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34486895

RESUMO

Based on the long history of Scutellaria plants in east traditional medicines, several species of Scutellaria showed promising antioxidant, anti-inflammation and neuroprotection effects in pharmacological researches. Using bioassay-guided fractionation of various extract of Scutellaria nepetifolia, an endemic species that grows widely in Iran, based on on nitric oxide (NO) inhibitory activity against H2O2 induced NO production in PC12 pheochromocytoma cells led to the isolation of two iridoid compounds namely, as 6ß-hydroxy 8-epiboshnaloside (1) and 1,5,9-epideoxy loganic acid (2) and Verbascoside (3). Finally, the interaction of isolated compounds with inducible nitric oxide synthase (iNOS) protein was simulated by molecular docking study. It is the first report of these two iridoid glycosides from Scutellaria spp. All three isolated compounds showed strong interaction with iNOS enzyme in molecular docking simulations. So, they possibly contributed in the NO inhibitory effect of S. nepetifolia.


Assuntos
Scutellaria , Peróxido de Hidrogênio , Simulação de Acoplamento Molecular , Óxido Nítrico , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Scutellaria/química
16.
Curr Med Chem ; 29(9): 1561-1595, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34238142

RESUMO

In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, and EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low/moderate levels may favor tumorigenesis, while higher levels would exert antitumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "doubleedged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.


Assuntos
Neoplasias , Óxido Nítrico , Carcinogênese , Humanos , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo
17.
J Cell Mol Med ; 26(2): 274-286, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894069

RESUMO

Based on the recent reports, cardiovascular events encompass a large portion of the mortality caused by the COVID-19 pandemic, which drawn cardiologists into the management of the admitted ill patients. Given that common laboratory values may provide key insights into the illness caused by the life-threatening SARS-CoV-2 virus, it would be more helpful for screening, clinical management and on-time therapeutic strategies. Commensurate with these issues, this review article aimed to discuss the dynamic changes of the common laboratory parameters during COVID-19 and their association with cardiovascular diseases. Besides, the values that changed in the early stage of the disease were considered and monitored during the recovery process. The time required for returning biomarkers to basal levels was also discussed. Finally, of particular interest, we tended to abridge the latest updates regarding the cardiovascular biomarkers as prognostic and diagnostic criteria to determine the severity of COVID-19.


Assuntos
COVID-19/sangue , Doenças Cardiovasculares/sangue , Sistema Cardiovascular/metabolismo , SARS-CoV-2/patogenicidade , Biomarcadores/sangue , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/imunologia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/imunologia , Sistema Cardiovascular/patologia , Sistema Cardiovascular/virologia , Quimiocina CCL2/sangue , Creatina Quinase Forma MB/sangue , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Homocisteína/sangue , Humanos , Interferon gama/sangue , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Prognóstico , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Troponina I/sangue , Troponina T/sangue , Fator de Necrose Tumoral alfa/sangue
18.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34832888

RESUMO

The Mela Rosa dei Monti Sibillini is an ancient apple variety cultivated by Romans in the foothills of the Sibillini Mountains, central Italy, showing potential as a source of nutraceuticals. The purpose of this study was to evaluate the protective effects of the hydroalcoholic extracts from the peel (APE) and pulp (APP) of this fruit in an animal model of transient global ischemia. Chemical constituents were analyzed by liquid chromatography-mass spectrometry (LC-DAD-MSn) indicating several polyphenols such as B-type procyanidins, quercetin derivatives and hydroxycinnamic acids as the main bioactive components. Acute pre-treatment of extracts (30 mg/kg, i.p.) significantly decreased the brain levels of the pro-inflammatory cytokines IL-1ß (p < 0.01) and TNF-α (p < 0.001 and p < 0.01 for APE and APP, respectively), the expression of caspase-3 (p < 0.01, For APE) and MDA (p < 0.05), a lipid peroxidation biomarker in rats. Both extracts restricted the pathological changes of the brain induced by ischemic stroke in hematoxylin and eosin assay. Moreover, they improved the scores of behavioral tests in grid-walking and modified neurological severity scores (mNSS) tests. In conclusion, these results proved this ancient Italian apple is a source of nutraceuticals able to protect/prevent damage from brain ischemia.

19.
Mol Biol Rep ; 48(12): 8221-8225, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655016

RESUMO

Arglabin (l(R),10(S)-epoxy-5(S),5(S),7(S)-guaia-3(4),ll(13)-dien-6,12-olide), is a natural sesquiterpene γ-lactone which was first isolated from Artemisia glabella. The compound has been shown to possess anti-inflammatory activity through inhibition of the NLR Family pyrin domain-containing 3 (NLRP3) inflammasome and production of proinflammatory cytokines including interleukin (IL)-1ß and IL-18. A more hydrophilic derivative of the compound also exhibited antitumor activity in the breast, colon, ovarian, and lung cancer. Some other synthetic derivatives of the compound have also been synthesized with antitumor, cytotoxic, antibacterial, and antifungal activities. Since both NLRP3 inflammasome and cytokine storm are associated with the pathogenesis of COVID-19 and its lethality, compounds like arglabin might have therapeutic potential to attenuate the inflammasome-induced acute respiratory distress syndrome and/or the cytokine storm associated with COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Sesquiterpenos de Guaiano/uso terapêutico , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Artemisia , COVID-19/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas , Humanos , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pandemias , Síndrome do Desconforto Respiratório/tratamento farmacológico , SARS-CoV-2/patogenicidade , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Int Immunopharmacol ; 101(Pt B): 108257, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34673299

RESUMO

Recently, the medications used for the severe form of the coronavirus disease-19 (COVID-19) therapy are of particular interest. In this sense, it has been supposed that anti-VEGF compounds would be good candidates in the face of "cytokine storm" and intussuscepted angiogenesis due to having an appreciable anti-inflammatory effect. Therefore, they can be subjected to therapeutic protocols to manage acute respiratory distress syndrome (ARDS). Since the compelling evidence emphasized that VEGFs contribute to the inflammatory process and play a mainstay role in disease pathogenesis, in this review, we aimed to highlight the VEGF's plausible participation in the cytokine storm exacerbation in COVID-19. Next, the recent clinical advances regarding the anti-VEGF medications, including humanized monoclonal antibody, immunosuppressant, a tyrosine kinase inhibitor, and a cytokine inhibitor, have been addressed in the setting of COVID-19 treatment in critically ill patients. Together, retrieving the increased level of VEGF subsets, as well as antagonizing VEGF related receptors, could be helpful for the treatment of COVID-19, especially in those suffering from ARDS.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Tratamento Farmacológico da COVID-19 , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , COVID-19/imunologia , Estado Terminal , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/imunologia , Fatores de Crescimento do Endotélio Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA