RESUMO
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Assuntos
Carcinogênese , Centrômero , Instabilidade Cromossômica , Neoplasias , Humanos , Instabilidade Cromossômica/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Centrômero/genética , Centrômero/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Animais , AneuploidiaRESUMO
Cancer is a complex disease driven by multiple genetic changes, including mutations in oncogenes, tumor suppressor genes, DNA repair genes, and genes involved in cancer metabolism. Synthetic lethality (SL) is a promising approach in cancer research and treatment, where the simultaneous dysfunction of specific genes or pathways causes cell death. By targeting vulnerabilities created by these dysfunctions, SL therapies selectively kill cancer cells while sparing normal cells. SL therapies, such as PARP inhibitors, WEE1 inhibitors, ATR and ATM inhibitors, and DNA-PK inhibitors, offer a distinct approach to cancer treatment compared to conventional targeted therapies. Instead of directly inhibiting specific molecules or pathways, SL therapies exploit genetic or molecular vulnerabilities in cancer cells to induce selective cell death, offering benefits such as targeted therapy, enhanced treatment efficacy, and minimized harm to healthy tissues. SL therapies can be personalized based on each patient's unique genetic profile and combined with other treatment modalities to potentially achieve synergistic effects. They also broaden the effectiveness of treatment across different cancer types, potentially overcoming drug resistance and improving patient outcomes. This review offers an overview of the current understanding of SL mechanisms, advancements, and challenges, as well as the preclinical and clinical development of SL. It also discusses new directions and opportunities for utilizing SL in targeted therapy for anticancer treatment.
RESUMO
Oral cancers, specifically oral squamous cell carcinoma (OSCC), pose a significant global health challenge, with high incidence and mortality rates. Conventional treatments such as surgery, radiotherapy, and chemotherapy have limited effectiveness and can result in adverse reactions. However, as an alternative, photodynamic therapy (PDT) has emerged as a promising option for treating oral cancers. PDT involves using photosensitizing agents in conjunction with specific light to target and destroy cancer cells selectively. The photosensitizers accumulate in the cancer cells and generate reactive oxygen species (ROS) upon exposure to the activating light, leading to cellular damage and ultimately cell death. PDT offers several advantages, including its non-invasive nature, absence of known long-term side effects when administered correctly, and cost-effectiveness. It can be employed as a primary treatment for early-stage oral cancers or in combination with other therapies for more advanced cases. Nonetheless, it is important to note that PDT is most effective for superficial or localized cancers and may not be suitable for larger or deeply infiltrating tumors. Light sensitivity and temporary side effects may occur but can be managed with appropriate care. Ongoing research endeavors aim to expand the applications of PDT and develop novel photosensitizers to further enhance its efficacy in oral cancer treatment. This review aims to evaluate the effectiveness of PDT in treating oral cancers by analyzing a combination of preclinical and clinical studies.
RESUMO
Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.
Assuntos
Neoplasias Bucais , Periodontite , Humanos , Periodontite/complicações , Periodontite/microbiologia , Neoplasias Bucais/microbiologia , Neoplasias Bucais/genética , Animais , Inflamação/complicações , Porphyromonas gingivalis/patogenicidadeRESUMO
Catharanthine, a component of the anticancer drug vinblastine along with vindoline, disrupts the cell cycle by interfering with mitotic spindle formation. Apart from their antioxidant properties, vinca alkaloids like catharanthine inhibit phosphodiesterase activity and elevate intracellular cAMP levels. The aim of this study was to investigate how catharantine affects apoptosis and autophagy. This study conducted experiments on HepG2 liver carcinoma cells with varying doses of catharanthine to evaluate cell death rates and viability and determine the IC50 concentration via MTT assays. The apoptotic and autophagic effects of catharanthine were assessed using flow cytometry with annexin V and PI staining, while the expression of autophagy-related genes was analyzed through quantitative PCR. Additionally, molecular docking and molecular dynamics simulations were employed to further investigate catharanthine's impact on autophagy mechanisms. The study showed that catharanthine reduced oxidative stress and triggered apoptosis in HepG2 cells in a dose-dependent manner. Catharanthine also upregulated the expression of autophagy-related genes like LC3, Beclin1, and ULK1. Notably, catharanthine increased sirtuin-1 levels, a known autophagy inducer, while decreasing Akt expression compared to untreated cells. Molecular docking results indicated rapamycin had a stronger binding affinity with FRB (-10.7 KJ/mol-1) than catharanthine (-7.3 KJ/mol-1). Additionally, molecular dynamics simulations revealed that catharanthine interacted effectively with the FRB domain of mTOR, displaying stability and a strong binding affinity, although not as potent as rapamycin. In summary, besides its cytotoxic and pro-apoptotic effects, catharanthine activates autophagy signaling pathways and induces autophagic necrosis by inhibiting mTOR.
Assuntos
Apoptose , Autofagia , Simulação de Acoplamento Molecular , Alcaloides de Vinca , Humanos , Células Hep G2 , Alcaloides de Vinca/farmacologia , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Antineoplásicos Fitogênicos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Simulação de Dinâmica Molecular , Simulação por Computador , Antineoplásicos/farmacologia , Relação Dose-Resposta a DrogaRESUMO
The main structural difference between the mutation-susceptible retinal isoforms of inosine 5´-monophosphate dehydrogenase-1 (IMPDH-1) with the canonical form resides in the C- and N-terminal peptide extensions with unknown structural/functional impacts. In this report, we aimed to experimentally evaluate the functional impact of these extensions on the specific/non-specific single-stranded DNA (ssDNA)-binding activities relative to those of the canonical form. Our in silico findings indicated the possible contribution of the C-terminal segment to the reduced flexibility of the Bateman domain of the enzyme. In addition, the in silico data indicated that the N-terminal tail acts by altering the distance between the tetramers in the concave octamer complex (the native form) of the enzyme. The overall impact of these predicted structural variations became evident, first, through higher Km values with respect to either of the substrates relative to the canonical isoform, as reported previously (Andashti et al. in Mol Cell Biochem 465(1):155-164, 2020). Secondary, the binding of the recombinant mouse retinal isoform IMPDH1 (603) to its specific Rhodopsin target gene was significantly augmented while its binding to non-specific ssDNA was lower than that of the canonical isoform. The DNA-binding activity of the other mouse retinal isoform, IMPDH1(546), to specific and non-specific ssDNA was lower than that of the canonical form most probably due to the in silico predicted rigidity created in the Bateman domain by the C-terminal peptide extension. Furthermore, the DNA binding to the Rhodopsin target gene by each of the IMPDH isoforms influenced in the presence of GTP (Guanosine triphosphate) and ATP (Adenosine triphosphate).
Assuntos
IMP Desidrogenase , Animais , Humanos , Camundongos , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , IMP Desidrogenase/metabolismo , IMP Desidrogenase/química , IMP Desidrogenase/genética , Isoenzimas/metabolismo , Isoenzimas/química , Isoenzimas/genética , Ligação Proteica , Retina/metabolismo , Retina/enzimologiaRESUMO
Oral squamous cell carcinoma (OSCC) is a cancer type with a high rate of recurrence and a poor prognosis. Tumor chemo-resistance remains an issue for OSCC patients despite the availability of multimodal therapy options, which causes an increase in tumor invasiveness. Vacuolar ATPase (V-ATPase), appears to be one of the most significant molecules implicated in MDR in tumors like OSCC. It is primarily responsible for controlling the acidity in the solid tumors' microenvironment, which interferes with the absorption of chemotherapeutic medications. However, the exact cellular and molecular mechanisms V-ATPase plays in OSCC chemo-resistance have not been understood. Uncovering these mechanisms can contribute to combating OSCC chemo-resistance and poor prognosis. Hence, in this review, we suggest that one of these underlying mechanisms is autophagy induced by V-ATPase which can potentially contribute to OSCC chemo-resistance. Finally, specialized autophagy and V-ATPase inhibitors may be beneficial as an approach to reduce drug resistance to anticancer therapies in addition to serving as coadjuvants in antitumor treatments. Also, V-ATPase could be a prognostic factor for OSCC patients. However, in the future, more investigations are required to demonstrate these suggestions and hypotheses.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , ATPases Vacuolares Próton-Translocadoras , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/tratamento farmacológico , Autofagia , Microambiente TumoralRESUMO
Extensive research in countries with high sociodemographic indices (SDIs) to date has shown that coronavirus disease 2019 (COVID-19) may be directly associated with more severe outcomes among patients living with haematological disorders and malignancies (HDMs). Because individuals with moderate to severe immunodeficiency are likely to undergo persistent infections, shed virus particles for prolonged periods, and lack an inflammatory or abortive phase, this represents an overall risk of morbidity and mortality from COVID-19. In cases suffering from HDMs, further investigation is needed to achieve a better understanding of triviruses and a group of related variants in patients with anemia and HDMs, as well as their treatment through vaccines, drugs, and other methods. Against this background, the present study aimed to delineate the relationship between HDMs and the novel COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides, effective treatment options for HDM cases were further explored to address this epidemic and its variants. Therefore, learning about how COVID-19 manifests in these patients, along with exploiting the most appropriate treatments, may lead to the development of treatment and care strategies by clinicians and researchers to help patients recover faster. Video Abstract.
Assuntos
Anemia , COVID-19 , Neoplasias Hematológicas , Humanos , SARS-CoV-2 , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/terapia , Fatores de Risco , Anemia/complicações , Anemia/epidemiologia , Anemia/terapiaRESUMO
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Assuntos
Apetite , Gastroenteropatias , Melatonina , Melatonina/metabolismo , Melatonina/uso terapêutico , Melatonina/farmacologia , Humanos , Animais , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo , Gastroenteropatias/fisiopatologia , Apetite/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologiaRESUMO
Lung cancer ranks among the most prevalent forms of cancer and remains a significant factor in cancer-related mortality across the world. It poses significant challenges to healthcare systems and society as a whole due to its high incidence, mortality rates, and late-stage diagnosis. Resveratrol (RV), a natural compound found in various plants, has shown potential as a nanomedicine for lung cancer treatment. RV has varied effects on cancer cells, including promoting apoptosis by increasing pro-apoptotic proteins (Bax and Bak) and decreasing anti-apoptotic proteins (Bcl-2). It also hinders cell proliferation by influencing important signaling pathways (MAPK, mTOR, PI3K/Akt, and Wnt/ß-catenin) that govern cancer progression. In addition, RV acts as a potent antioxidant, diminishing oxidative stress and safeguarding cells against DNA damage. However, using RV alone in cancer treatment has drawbacks, such as low bioavailability, lack of targeting ability, and susceptibility to degradation. In contrast, nanoparticle-based delivery systems address these limitations and hold promise for improving treatment outcomes in lung cancer; nanoparticle formulations of RV offer advantages such as improved drug delivery, increased stability, controlled release, and targeted delivery to lung cancer cells. This article will provide an overview of lung cancer, explore the potential of RV as a therapeutic agent, discuss the benefits and challenges of nanoparticle-based drug delivery, and highlight the promise of RV nanoparticles for cancer treatment, including lung cancer. By optimizing these systems for clinical application, future studies aim to enhance overall treatment outcomes and improve the prognosis for lung cancer patients.
Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Resveratrol/uso terapêutico , Fosfatidilinositol 3-Quinases , Sistemas de Liberação de Medicamentos , Antioxidantes/farmacologia , Antioxidantes/uso terapêuticoRESUMO
A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.
Assuntos
Neoplasias , Polietilenoimina , Polietilenoimina/química , Técnicas de Transferência de Genes , Terapia Genética , Transfecção , Neoplasias/genética , Neoplasias/terapiaRESUMO
According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/patologia , MicroRNAs/genética , Autofagia/genéticaRESUMO
ß-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of ß-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via ß-glucans. ß-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of ß-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal ß-glucans, as well as their application.
Assuntos
beta-Glucanas , Humanos , beta-Glucanas/uso terapêutico , Fagocitose , Neutrófilos , Macrófagos/metabolismo , Citocinas/metabolismoRESUMO
The coenzyme ubiquinone-10 (CoQ10) is not only an important part of the electron transport chain of the mitochondrial inner membrane but also has complex biological functions beyond mitochondrial respiration. It is a natural nutrient that is not only produced by the body but is also found in foods, such as meat, eggs, fish, and vegetable oils. Because some types of cancer reduce CoQ10 blood levels, the use of CoQ10 supplements is recommended for the treatment of cancer patients. The anti-cancer effects of CoQ10 supplementation have been reported in several cancers, including colon and breast cancer. CoQ10 scavenges free radicals to reduce oxidative stress and minimize tissue damage. CoQ10 protects the body from damage caused by chemotherapy drugs by reducing the production of inflammatory cytokines and other inflammatory factors. Recent studies suggest that CoQ10 may be a supplement to pharmacotherapy for hepatocellular carcinoma. This article examines the effects of CoQ10 in hepatocellular carcinoma.
RESUMO
The resistance of cancer cells to chemotherapy, also known as chemo-resistance, poses a significant obstacle to cancer treatment and can ultimately result in patient mortality. Epithelial-mesenchymal transition (EMT) is one of the many factors and processes responsible for chemo-resistance. Studies have shown that targeting EMT can help overcome chemo-resistance, and nanotechnology and nanomedicine have emerged as promising approaches to achieve this goal. This article discusses the potential of nanotechnology in inhibiting EMT and proposes a viable strategy to combat chemo-resistance in various solid tumors, including breast cancer, lung cancer, pancreatic cancer, glioblastoma, ovarian cancer, gastric cancer, and hepatocellular carcinoma. While nanotechnology has shown promising results in targeting EMT, further research is necessary to explore its full potential in overcoming chemo-resistance and discovering more effective methods in the future.
Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , Humanos , Feminino , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Neoplasias da Mama/tratamento farmacológico , Nanotecnologia , Linhagem Celular TumoralRESUMO
Protein aggregation is a biological process that occurs when proteins misfold. Misfolding and aggregation of human superoxide dismutase (hSOD1) cause a neurodegenerative disease called amyotrophic lateral sclerosis (ALS). Among the mutations occurring, targeting the E21K mutation could be a good choice to understand the pathological mechanism of SOD1 in ALS, whereof it significantly reduces life hopefulness in patients. Naturally occurring polyphenolic flavonoids have been suggested as a way to alleviate the amyloidogenic behavior of proteins. In this study, computational tools were used to identify promising flavonoid compounds that effectively inhibit the pathogenic behavior of the E21K mutant. Initial screening identified Pelargonidin, Curcumin, and Silybin as promising leads. Molecular dynamics (MD) simulations showed that the binding of flavonoids to the mutated SOD1 caused changes in the protein stability, hydrophobicity, flexibility, and restoration of lost hydrogen bonds. Secondary structure analysis indicated that the protein destabilization and the increased propensity of ß-sheet caused by the mutation were restored to the wild-type state upon binding of flavonoids. Free energy landscape (FEL) analysis was also used to differentiate aggregation, and results showed that Silybin followed by Pelargonidin had the most therapeutic efficacy against the E21K mutant SOD1. Therefore, these flavonoids hold great potential as highly effective inhibitors in mitigating ALS's fatal and insuperable effects.Communicated by Ramaswamy H. Sarma.
RESUMO
The control of biological cell death is essential for the body's appropriate growth. The resistance of cells to the apoptotic process presents a new difficulty in the treatment of cancer. To combat cancer cells, researchers are working to find new apoptotic pathways and components to activate. One of the processes of regulated cell death (RCD) is referred to as ferroptosis marked by a decline in the activity of lipid glutathione peroxidase 4 (GPX4) after the buildup of reactive oxygen species (ROS). Since lipid peroxidation is a crucial component of ferroptosis and is required for its start, numerous medicines have been studied, particularly for the treatment of cancer. In this context, autophagy is an additional form of RCD that can govern ferroptosis through shared signaling pathways/factors involved in both mechanisms. In this review, we will explore the molecular mechanisms underlying ferroptosis and its association with autophagy, to gain fresh insights into their interplay in cancer advancement, and the potential of natural products for its treatment.
RESUMO
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Células da Medula Óssea , Proliferação de Células , Transdução de Sinais , Microambiente TumoralRESUMO
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
RESUMO
Numerous studies have revealed that cancer patients are more likely to develop severe Coronavirus disease-2019 (COVID-19), which can cause mortality, as well as cancer progression and treatment failure. Among these patients who may be particularly vulnerable to severe COVID-19 and COVID-19-associated cancer progression are those with oral squamous cell carcinoma (OSCC). In this regard, therapeutic approaches must be developed to lower the risk of cancer development, chemo-resistance, tumor recurrence, and death in OSCC patients with COVID-19. It may be helpful to comprehend the cellular and molecular mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to these problems. In this line, in this review, we described the potential cellular and molecular mechanisms that SARS-CoV-2 can exert its role and based on them pharmacological targeted therapies were suggested. However, in this study, we encourage more investigations in the future to uncover other cellular and molecular mechanisms of action of SARS-CoV-2 to develop beneficial therapeutic strategies for such patients.