Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999208

RESUMO

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Adenoviridae/genética , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C
2.
Mol Ther Methods Clin Dev ; 16: 108-125, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31934599

RESUMO

Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.

3.
Biomacromolecules ; 21(2): 793-802, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31829561

RESUMO

Synthetic materials capable of engineering the immune system are of great relevance in the fight against cancer to replace or complement the current monoclonal antibody and cell therapy-based immunotherapeutics. Here, we report on antibody recruiting glycopolymers (ARGPs). ARGPs consist of polymeric copies of a rhamnose motif, which can bind endogenous antirhamnose antibodies present in human serum. As a proof-of-concept, we have designed ARGPs with a lipophilic end group that efficiently inserts into cell-surface membranes. We validate the specificity of rhamnose to attract antibodies from human serum to the target cell surface and demonstrate that ARGPs outperform an analogous small-molecule compound containing only one single rhamnose motif. The ARGP concept opens new avenues for the design of potent immunotherapeutics that mark target cells for destruction by the immune system through antibody-mediated effector functions.


Assuntos
Anticorpos Monoclonais/metabolismo , Formação de Anticorpos/fisiologia , Polímeros/metabolismo , Receptores de Superfície Celular/metabolismo , Ramnose/metabolismo , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Feminino , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Polímeros/química , Ligação Proteica/fisiologia , Receptores de Superfície Celular/química , Ramnose/química , Adulto Jovem
4.
Nat Immunol ; 18(4): 464-473, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192418

RESUMO

Infection with influenza virus induces antibodies to the viral surface glycoproteins hemagglutinin and neuraminidase, and these responses can be broadly protective. To assess the breadth and magnitude of antibody responses, we sequentially infected mice, guinea pigs and ferrets with divergent H1N1 or H3N2 subtypes of influenza virus. We measured antibody responses by ELISA of an extensive panel of recombinant glycoproteins representing the viral diversity in nature. Guinea pigs developed high titers of broadly cross-reactive antibodies; mice and ferrets exhibited narrower humoral responses. Then, we compared antibody responses after infection of humans with influenza virus H1N1 or H3N2 and found markedly broad responses and cogent evidence for 'original antigenic sin'. This work will inform the design of universal vaccines against influenza virus and can guide pandemic-preparedness efforts directed against emerging influenza viruses.


Assuntos
Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Fatores Etários , Animais , Análise por Conglomerados , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Furões , Cobaias , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina G/imunologia , Vírus da Influenza A/classificação , Masculino , Camundongos , Pessoa de Meia-Idade , Neuraminidase/imunologia , Proteínas Virais/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA