Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Oncol ; 14: 1329696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347835

RESUMO

Purpose: Stereotactic radiosurgery (SRS) has been increasingly used to treat intracranial pathologies in elderly patients. The treatment efficiency of SRS has been demonstrated in meningiomas, with excellent local control. We aimed to analyze the safety of robotic SRS in elderly patients with meningiomas. Methods: We searched for patients with suspected WHO °I meningioma ≥ 60 years old, who underwent CyberKnife (CK) SRS from January 2011 to December 2021. Tumor localization was categorized using the "CLASS" algorithmic scale. Tumor response was evaluated using the Response Assessment in Neuro-Oncology (RANO) criteria for meningiomas. Adverse effects were graded using the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0 and a cox regression was performed to investigate possible predictors. Results: We identified 82 patients with 102 CK-treated lesions that matched the criteria for the first SRS. The median age was 70 [IQR 64-75] years, and 24.3% of the patients were aged > 75 years. Multiple lesions (up to six) were treated in 14.1% of the SRS-sessions. A previous surgery was performed in 57.3% of lesions, with a median time interval of 41 [IQR 10 - 58] months between the initial surgical procedure and the SRS treatment. In 47.9% of cases, CLASS 3 meningiomas at high-risk locations were irradiated. Single fraction radiosurgery was applied to 62.5% of the lesions, while in the remaining cases multi-session SRS with three to five fractions was used. During the median follow-up period of 15.9 months, lesion size progression was observed in 3 cases. Karnofsky Performance Status (KPS) declined by ≥ 20 points in four patients. Adverse effects occurred in 13 patients, while only four patients had CTCAE ≥2 toxicities. Hereby only one of these toxicities was persistent. The occurrence of complications was independent of age, planned target volume (PTV), high-risk localization, and surgery before SRS. Conclusion: The data indicates that SRS is a safe, efficient, and convenient treatment modality for elderly patients with meningioma, even at high-risk locations.

2.
Radiat Oncol ; 18(1): 148, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674171

RESUMO

BACKGROUND: Target volume definition for curative radiochemotherapy in head and neck cancer is crucial since the predominant recurrence pattern is local. Additional diagnostic imaging like MRI is increasingly used, yet it is usually hampered by different patient positioning compared to radiotherapy. In this study, we investigated the impact of diagnostic MRI in treatment position for target volume delineation. METHODS: We prospectively analyzed patients who were suitable and agreed to undergo an MRI in treatment position with immobilization devices prior to radiotherapy planning from 2017 to 2019. Target volume delineation for the primary tumor was first performed using all available information except for the MRI and subsequently with additional consideration of the co-registered MRI. The derived volumes were compared by subjective visual judgment and by quantitative mathematical methods. RESULTS: Sixteen patients were included and underwent the planning CT, MRI and subsequent definitive radiochemotherapy. In 69% of the patients, there were visually relevant changes to the gross tumor volume (GTV) by use of the MRI. In 44%, the GTV_MRI would not have been covered completely by the planning target volume (PTV) of the CT-only contour. Yet, median Hausdorff und DSI values did not reflect these differences. The 3-year local control rate was 94%. CONCLUSIONS: Adding a diagnostic MRI in RT treatment position is feasible and results in relevant changes in target volumes in the majority of patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia (Especialidade) , Humanos , Imageamento por Ressonância Magnética , Quimiorradioterapia , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Posicionamento do Paciente
4.
Z Med Phys ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37263911

RESUMO

BACKGROUND AND PURPOSE: MR-guided radiotherapy (MRgRT) online plan adaptation accounts for tumor volume changes, interfraction motion and thus allows daily sparing of relevant organs at risk. Due to the high interfraction variability of bladder and rectum, patients with tumors in the pelvic region may strongly benefit from adaptive MRgRT. Currently, fast automatic annotation of anatomical structures is not available within the online MRgRT workflow. Therefore, the aim of this study was to train and validate a fast, accurate deep learning model for automatic MRI segmentation at the MR-Linac for future implementation in a clinical MRgRT workflow. MATERIALS AND METHODS: For a total of 47 patients, T2w MRI data were acquired on a 1.5 T MR-Linac (Unity, Elekta) on five different days. Prostate, seminal vesicles, rectum, anal canal, bladder, penile bulb, body and bony structures were manually annotated. These training data consisting of 232 data sets in total was used for the generation of a deep learning based autocontouring model and validated on 20 unseen T2w-MRIs. For quantitative evaluation the validation set was contoured by a radiation oncologist as gold standard contours (GSC) and compared in MATLAB to the automatic contours (AIC). For the evaluation, dice similarity coefficients (DSC), and 95% Hausdorff distances (95% HD), added path length (APL) and surface DSC (sDSC) were calculated in a caudal-cranial window of ± 4 cm with respect to the prostate ends. For qualitative evaluation, five radiation oncologists scored the AIC on the possible usage within an online adaptive workflow as follows: (1) no modifications needed, (2) minor adjustments needed, (3) major adjustments/ multiple minor adjustments needed, (4) not usable. RESULTS: The quantitative evaluation revealed a maximum median 95% HD of 6.9 mm for the rectum and minimum median 95% HD of 2.7 mm for the bladder. Maximal and minimal median DSC were detected for bladder with 0.97 and for penile bulb with 0.73, respectively. Using a tolerance level of 3 mm, the highest and lowest sDSC were determined for rectum (0.94) and anal canal (0.68), respectively. Qualitative evaluation resulted in a mean score of 1.2 for AICs over all organs and patients across all expert ratings. For the different autocontoured structures, the highest mean score of 1.0 was observed for anal canal, sacrum, femur left and right, and pelvis left, whereas for prostate the lowest mean score of 2.0 was detected. In total, 80% of the contours were rated be clinically acceptable, 16% to require minor and 4% major adjustments for online adaptive MRgRT. CONCLUSION: In this study, an AI-based autocontouring was successfully trained for online adaptive MR-guided radiotherapy on the 1.5 T MR-Linac system. The developed model can automatically generate contours accepted by physicians (80%) or only with the need of minor corrections (16%) for the irradiation of primary prostate on the clinically employed sequences.

5.
Radiol Oncol ; 57(2): 184-190, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341194

RESUMO

BACKGROUND: Hybrid MRI linear accelerators (MR-Linac) might enable individualized online adaptation of radiotherapy using quantitative MRI sequences as diffusion-weighted imaging (DWI). The purpose of this study was to investigate the dynamics of lesion apparent diffusion coefficient (ADC) in patients with prostate cancer undergoing MR-guided radiation therapy (MRgRT) on a 1.5T MR-Linac. The ADC values at a diagnostic 3T MRI scanner were used as the reference standard. PATIENTS AND AND METHODS: In this prospective single-center study, patients with biopsy-confirmed prostate cancer who underwent both an MRI exam at a 3T scanner (MRI3T) and an exam at a 1.5T MR-Linac (MRL) at baseline and during radiotherapy were included. Lesion ADC values were measured by a radiologist and a radiation oncologist on the slice with the largest lesion. ADC values were compared before vs. during radiotherapy (during the second week) on both systems via paired t-tests. Furthermore, Pearson correlation coefficient and inter-reader agreement were computed. RESULTS: A total of nine male patients aged 67 ± 6 years [range 60 - 67 years] were included. In seven patients, the cancerous lesion was in the peripheral zone, and in two patients the lesion was in the transition zone. Inter-reader reliability regarding lesion ADC measurement was excellent with an intraclass correlation coefficient of (ICC) > 0.90 both at baseline and during radiotherapy. Thus, the results of the first reader will be reported. In both systems, there was a statistically significant elevation of lesion ADC during radiotherapy (mean MRL-ADC at baseline was 0.97 ± 0.18 × 10-3 mm2/s vs. mean MRL-ADC during radiotherapy 1.38 ± 0.3 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.41 ± 0.20 × 10-3 mm2/s, p < 0.001). Mean MRI3T-ADC at baseline was 0.78 ± 0.165 × 10-3 mm2/s vs. mean MRI3T-ADC during radiotherapy 0.99 ± 0.175 × 10-3 mm2/s, yielding a mean lesion ADC elevation of 0.21 ± 0.96 × 10-3 mm2/s p < 0.001). The absolute ADC values from MRL were consistently significantly higher than those from MRI3T at baseline and during radiotherapy (p < = 0.001). However, there was a strong positive correlation between MRL-ADC and MRI3T-ADC at baseline (r = 0.798, p = 0.01) and during radiotherapy (r = 0.863, p = 0.003). CONCLUSIONS: Lesion ADC as measured on MRL increased significantly during radiotherapy and ADC measurements of lesions on both systems showed similar dynamics. This indicates that lesion ADC as measured on the MRL may be used as a biomarker for evaluation of treatment response. In contrast, absolute ADC values as calculated by the algorithm of the manufacturer of the MRL showed systematic deviations from values obtained on a diagnostic 3T MRI system. These preliminary findings are promising but need large-scale validation. Once validated, lesion ADC on MRL might be used for real-time assessment of tumor response in patients with prostate cancer undergoing MR-guided radiation therapy.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Estudos de Viabilidade , Estudos Prospectivos , Reprodutibilidade dos Testes , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
6.
Front Oncol ; 13: 1056330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007157

RESUMO

Introduction: Neoadjuvant stereotactic radiosurgery (NaSRS) of brain metastases has gained importance, but it is not routinely performed. While awaiting the results of prospective studies, we aimed to analyze the changes in the volume of brain metastases irradiated pre- and postoperatively and the resulting dosimetric effects on normal brain tissue (NBT). Methods: We identified patients treated with SRS at our institution to compare hypothetical preoperative gross tumor and planning target volumes (pre-GTV and pre-PTV) with original postoperative resection cavity volumes (post-GTV and post-PTV) as well as with a standardized-hypothetical PTV with 2.0 mm margin. We used Pearson correlation to assess the association between the GTV and PTV changes with the pre-GTV. A multiple linear regression analysis was established to predict the GTV change. Hypothetical planning for the selected cases was created to assess the volume effect on the NBT exposure. We performed a literature review on NaSRS and searched for ongoing prospective trials. Results: We included 30 patients in the analysis. The pre-/post-GTV and pre-/post-PTV did not differ significantly. We observed a negative correlation between pre-GTV and GTV-change, which was also a predictor of volume change in the regression analysis, in terms of a larger volume change for a smaller pre-GTV. In total, 62.5% of cases with an enlargement greater than 5.0 cm3 were smaller tumors (pre-GTV < 15.0 cm3), whereas larger tumors greater than 25.0 cm3 showed only a decrease in post-GTV. Hypothetical planning for the selected cases to evaluate the volume effect resulted in a median NBT exposure of only 67.6% (range: 33.2-84.5%) relative to the dose received by the NBT in the postoperative SRS setting. Nine published studies and twenty ongoing studies are listed as an overview. Conclusion: Patients with smaller brain metastases may have a higher risk of volume increase when irradiated postoperatively. Target volume delineation is of great importance because the PTV directly affects the exposure of NBT, but it is a challenge when contouring resection cavities. Further studies should identify patients at risk of relevant volume increase to be preferably treated with NaSRS in routine practice. Ongoing clinical trials will evaluate additional benefits of NaSRS.

7.
Clin Transl Radiat Oncol ; 38: 1-5, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36299279

RESUMO

Background: Online adaptive MR-guided radiotherapy allows for the reduction of safety margins in dose escalated treatment of rectal tumors. With the use of smaller margins, precise tumor delineation becomes more critical. In the present study we investigated the impact of rectal ultrasound gel filling on interobserver variability in delineation of primary rectal tumor volumes. Methods: Six patients with locally advanced rectal cancer were scanned on a 1.5 T MRI-Linac without (MRI_e) and with application of 100 cc of ultrasound gel transanally (MRI_f). Eight international radiation oncologists expert in the treatment of gastrointestinal cancers delineated the gross tumor volume (GTV) on both MRI scans. MRI_f scans were provided to the participating centers after MRI_e scans had been returned. Interobserver variability was analyzed by either comparing the observers' delineations with a reference delineation (approach 1) and by building all possible pairs between observers (approach 2). Dice Similarity Index (DICE) and 95 % Hausdorff-Distance (95 %HD) were calculated. Results: Rectal ultrasound gel filling was well tolerated by all patients. Overall, interobserver agreement was superior in MRI_f scans based on median DICE (0.81 vs 0.74, p < 0.005 for approach 1 and 0.76 vs 0.64, p < 0.0001 for approach 2) and 95 %HD (6.9 mm vs 4.2 mm for approach 1, p = 0.04 and 8.9 mm vs 6.1 mm, p = 0.04 for approach 2). Delineated median tumor volumes and inter-quartile ranges were 26.99 cc [18.01-50.34 cc] in MRI_e and 44.20 [19.72-61.59 cc] in MRI_f scans respectively, p = 0.012. Conclusions: Although limited by the small number of patients, in this study the application of rectal ultrasound gel resulted in higher interobserver agreement in rectal GTV delineation. The endorectal gel filling might be a useful tool for future dose escalation strategies.

8.
Clin Transl Radiat Oncol ; 37: 153-156, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36339638

RESUMO

Introduction: Non-surgical management of rectal cancer aiming for organ-preservation is an important development to improve rectal cancer treatment. Dose escalated radiotherapy represents one approach to increase clinical complete response (cCR) rates. In the present study we present feasibility and outcome data on rectal cancer patients who were treated with dose escalated radiotherapy using an MR guided online response-adaptive workflow. Material and methods: A total of five patients were treated with 45 Gy in 25 fractions to the mesorectum and the internal iliac lymph nodes and a simultaneous integrated boost to the primary tumor with 50 Gy in 25 fractions on a conventional linac. In addition, weekly response-adaptive boost fractions with 3 Gy per fraction were scheduled on a 1.5 T MR-Linac. Concomitant chemotherapy with 5-fluorouracil was given as continuous venous infusion during the first and last week of treatment. Response was evaluated approximately-three months after the end of treatment and surgery was omitted in case of a clinical complete response (cCR) or a near cCR. Toxicity was graded by using PRO-CTCAE, Quality of life by the EORTC-QLQ-C30 questionnaire and continence according to the Wexner scale. Results: Response-adaptive dose escalated radiotherapy was feasible and well tolerated by all patients. Four reached a clinical complete response, one had a local excision confirming pathological complete response (pCR). All PRO-CTCAE grade 3 toxicities resolved within six months after the end of treatment. Quality of life and continence scores during follow-up were comparable to baseline levels. Conclusion: Dose-escalated online response-adaptive MR-guided radiotherapy appears to be a very promising treatment with the goal of organ preservation in rectal cancer leading to high response rates, excellent organ function and limited side effects. Further prospective evaluation is needed.

9.
Comput Methods Programs Biomed ; 225: 107085, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36044801

RESUMO

BACKGROUND AND OBJECTIVE: Tracking of anatomical structures in time-resolved medical image data plays an important role for various tasks such as volume change estimation or treatment planning. State-of-the-art deep learning techniques for automated tracking, while providing accurate results, require large amounts of human-labeled training data making their wide-spread use time- and resource-intensive. Our contribution in this work is the implementation and adaption of a self-supervised learning (SSL) framework that addresses this bottleneck of training data generation. METHODS: To this end we adapted and implemented an SSL framework that allows for automated anatomical tracking without the necessity for human-labeled training data. We evaluated this method by comparison to conventional- and deep learning optical flow (OF)-based tracking methods. We applied all methods on three different time-resolved medical image datasets (abdominal MRI, cardiac MRI, and echocardiography) and assessed their accuracy regarding tracking of pre-defined anatomical structures within and across individuals. RESULTS: We found that SSL-based tracking as well as OF-based methods provide accurate results for simple, rigid and smooth motion patterns. However, regarding more complex motion, e.g. non-rigid or discontinuous motion patterns in the cardiac region, and for cross-subject anatomical matching, SSL-based tracking showed markedly superior performance. CONCLUSION: We conclude that automated tracking of anatomical structures on time-resolved medical image data with minimal human labeling effort is feasible using SSL and can provide superior results compared to conventional and deep learning OF-based methods.


Assuntos
Abdome , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Radiografia , Aprendizado de Máquina Supervisionado
10.
J Clin Med ; 11(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012885

RESUMO

INTRODUCTION: Novel MRI-linear accelerator hybrids (MR-Linacs, MRL) promise an optimization of radiotherapy (RT) through daily MRI imaging with enhanced soft tissue contrast and plan adaptation on the anatomy of the day. These features might potentially improve salvage RT of prostate cancer (SRT), where the clinical target volume is confined by the mobile organs at risk (OAR) rectum and bladder. So far, no data exist about the feasibility of the MRL technology for SRT. In this study, we prospectively examined patients treated with SRT on a 1.5 T MRL and report on workflow, feasibility and acute toxicity. PATIENTS AND METHODS: Sixteen patients were prospectively enrolled within the MRL-01 study (NCT: NCT04172753). All patients were staged and had an indication for SRT after radical prostatectomy according to national guidelines. RT consisted of 66 Gy in 33 fractions or 66.5/70 Gy in 35 fractions in case of a defined high-risk region. On the 1.5 T MRL, daily plan adaption was performed using one of two workflows: adapt to shape (ATS, using contour adaptation and replanning) or adapt to position (ATP, rigid replanning onto the online anatomy with virtual couch shift). Duration of treatment steps, choice of workflow and treatment failure were recorded for each fraction of each patient. Patient-reported questionnaires about patient comfort were evaluated as well as extensive reporting of acute toxicity (patient reported and clinician scored). RESULTS: A total of 524/554 (94.6%) of fractions were successfully treated on the MRL. No patient-sided treatment failures occurred. In total, ATP was chosen in 45.7% and ATS in 54.3% of fractions. In eight cases, ATP was performed on top of the initial ATS workflow. Mean (range) duration of all fractions (on-table time until end of treatment) was 25.1 (17.6-44.8) minutes. Mean duration of the ATP workflow was 20.60 (17.6-25.2) minutes and of the ATS workflow 31.3 (28.2-34.1) minutes. Patient-reported treatment experience questionnaires revealed high rates of tolerability of the treatment procedure. Acute toxicity (RTOG, CTC as well as patient-reported CTC, IPSS and ICIQ) during RT and 3 months after was mild to moderate with a tendency of recovery to baseline levels at 3 months post RT. No G3+ toxicity was scored for any item. CONCLUSIONS: In this first report on SRT of prostate cancer patients on a 1.5 T MRL, we could demonstrate the feasibility of both available workflows. Daily MR-guided adaptive SRT of mean 25.1 min per fraction was well tolerated in this pretreated collective, and we report low rates of acute toxicity for this treatment. This study suggests that SRT on a 1.5 T MRL can be performed in clinical routine and it serves as a benchmark for future analyses.

11.
Radiother Oncol ; 174: 141-148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35902042

RESUMO

BACKGROUND AND PURPOSE: Functional information acquired through diffusion-weighted magnetic resonance imaging (DW-MRI) may be beneficial for personalized head and neck cancer (HNC) radiotherapy. Technical validation is required before DW-MRI based radiotherapy interventions can be realized clinically. The aim of this study was to assess the repeatability of apparent diffusion coefficients (ADC) derived from DW-MRI in HNC using echo-planar imaging (EPI) on a 1.5 T MR-Linac. MATERIAL AND METHODS: A total of eleven HNC patients underwent test/retest DW-MRI scans at least once per week during fractionated radiotherapy at the MR-Linac. An EPI DW-MRI test scan (b = 0, 150, 500 s/mm2) was acquired before the start of adaptive MR-guided radiotherapy in addition to an identical retest scan after irradiation. Volumes-of-interest (VOI) were defined manually for parotid (PTs) and submandibular glands (SMs), gross tumor volume (GTV) and lymph nodes (LNs). Mean ADC was calculated for all VOI in all test/retest scans. Absolute/relative repeatability coefficients (RCs/relRCs) as well as intraclass correlation coefficients (ICCs) were determined for all VOIs. RESULTS: A total of 81 datasets were analyzed. Mean test ADC values were 1380/1416, 950/1010, 1520 and 1344 · 10-6 mm2/s for left/right SM and PT, GTV and LNs, respectively. Accordingly, RC (relRC) values were determined as 271/281 (19.4/21.8%) and 138/155 (13.3/15.2%), 457 (31.3%) and 310 · 10-6 mm2/s (23.5%). ICC resulted in 0.80/0.87, 0.97/0.94, 0.75 and 0.83 for left/right SM and PT, GTV and LNs, respectively. CONCLUSION: The repeatability of ADC derived from EPI DW-MRI at the 1.5 T MR-Linac appears reasonable to be used for future biologically adapted MR-guided radiotherapy.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias de Cabeça e Pescoço , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Linfonodos/patologia , Imageamento por Ressonância Magnética , Glândula Parótida , Reprodutibilidade dos Testes
12.
Artigo em Inglês | MEDLINE | ID: mdl-35586786

RESUMO

The treatment of oligometastatic disease using MR guidance is an evolving field. Since August 2018 patients are treated on a 1.5 Tesla MR-Linac (MRL). We present current workflows and practice standards from seven institutions for the initial patients treated for lymph node and liver metastases.

13.
Radiother Oncol ; 168: 229-233, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134447

RESUMO

This retrospective study aimed at clinical evaluation of autonomous radiotherapy planning for ten prostate cancer cases, including organ-at-risk/target contouring and treatment planning. Five experts scored the clinical acceptability of each step using a 4-level Likert-scale resulting in 78%, 66% and 90% acceptance. For 6/10 patients the entire workflow was considered acceptable.


Assuntos
Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Estudos Retrospectivos
14.
Front Oncol ; 12: 1095633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36727060

RESUMO

Introduction: Stereotactic body radiotherapy (SBRT) is used to treat liver metastases with the intention of ablation. High local control rates were shown. Magnetic resonance imaging guided radiotherapy (MRgRT) provides the opportunity of a marker-less liver SBRT treatment due to the high soft tissue contrast. We report herein on one of the largest cohorts of patients treated with online MRgRT of liver metastases focusing on oncological outcome, toxicity, patient reported outcome measures (PROMs), quality of life. Material and methods: Patients treated for liver metastases with online MR-guided SBRT at a 1,5 T MR-Linac (Unity, Elekta, Crawley, UK) between March 2019 and December 2021 were included in this prospective study. UK SABR guidelines were used for organs at risk constraints. Oncological endpoints such as survival parameters (overall survival, progression-free survival) and local control as well as patient reported acceptance and quality of life data (EORTC QLQ-C30 questionnaire) were assessed. For toxicity scoring the Common Toxicity Criteria Version 5 were used. Results: A total of 51 patients with 74 metastases were treated with a median of five fractions. The median applied BED GTV D98 was 84,1 Gy. Median follow-up was 15 months. Local control of the irradiated liver metastasis after 12 months was 89,6%, local control of the liver was 40,3%. Overall survival (OS) after 12 months was 85.1%. Progression free survival (PFS) after 12 months was 22,4%. Local control of the irradiated liver lesion was 100% after three years when a BED ≥100 Gy was reached. The number of treated lesions did not impact local control neither of the treated or of the hepatic control. Patient acceptance of online MRgSBRT was high. There were no acute grade ≥ 3 toxicities. Quality of life data showed no significant difference comparing baseline and follow-up data. Conclusion: Online MR guided radiotherapy is a noninvasive, well-tolerated and effective treatment for liver metastases. Further prospective trials with the goal to define patients who actually benefit most from an online adaptive workflow are currently ongoing.

15.
Radiother Oncol ; 164: 37-42, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34534612

RESUMO

INTRODUCTION: Dose escalated radiotherapy has previously been investigated as a strategy to increase complete response rates in rectal cancer. However large safety margins are required using cone-beam computed tomography guided radiotherapy leading to high doses to organs at risk or insufficient target volume coverage in order to keep dose constraints. We herein present the first clinical application of a new technique for dose escalation in rectal cancer using online magnetic resonance (MR)-guidance and rectal ultrasound gel filling. METHODS: A 73-year-old patient with distal cT3a cN0 cM0 rectal cancer was referred for definitive radiochemotherapy with the goal of organ preservation after multidisciplinary discussion. A dose of 45 Gy in 25 fractions with a stereotactic integrated boost to the primary tumor of 50 Gy with concomitant 5-fluorouracil was prescribed. Furthermore, a boost to the primary tumor with 3 Gy per fraction using the adapt-to-shape workflow on a 1.5 T MR-Linac was planned once weekly. For the boost fractions 100 cc of ultrasound gel was applied rectally in order to improve tumor visibility and distancing of uninvolved rectal mucosa. In order to determine the required planning target volume margin diagnostic scans of ten rectal cancer patients conducted with rectal ultrasound gel filling were studied. RESULTS: Based on the ten diagnostic scans an average isotropic margin of 4 mm was found to be sufficient to cover 95% of the target volume during an online adaptive workflow. Three boost fractions were applied, mean treatment duration was 22:34 min. Treatment was well tolerated by the patient with no more than PRO-CTCAE grade I° toxicity of any kind. The rectal ultrasound gel filling resulted in superior visibility of the tumor and reduced the dose to the involved mucosa especially in the high dose range compared with a boost plan calculated without any filling. A considerable tumor shrinkage was observed during treatment from 17.43 cc at baseline to 4 cc in week four. CONCLUSION: This novel method appears to be a simple but effective strategy for dose escalated radiotherapy in rectal cancer. Based on the encouraging observation, a prospective trial is currently under preparation.


Assuntos
Radioterapia de Intensidade Modulada , Neoplasias Retais , Idoso , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Estudos Prospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/radioterapia
16.
Phys Imaging Radiat Oncol ; 19: 6-12, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34307914

RESUMO

BACKGROUND AND PURPOSE: Hybrid magnetic resonance linear accelerator (MR-Linac) systems represent a novel technology for online adaptive radiotherapy. 3D secondary dose calculation (SDC) of online adapted plans is required to assure patient safety. Currently, no 3D-SDC solution is available for 1.5T MR-Linac systems. Therefore, the aim of this project was to develop and validate a method for online automatic 3D-SDC for adaptive MR-Linac treatments. MATERIALS AND METHODS: An accelerator head model was designed for an 1.5T MR-Linac system, neglecting the magnetic field. The use of this model for online 3D-SDC of MR-Linac plans was validated in a three-step process: (1) comparison to measured beam data, (2) investigation of performance and limitations in a planning phantom and (3) clinical validation using n = 100 patient plans from different tumor entities, comparing the developed 3D-SDC with experimental plan QA. RESULTS: The developed model showed median gamma passing rates compared to MR-Linac base data of 84.7%, 100% and 99.1% for crossplane, inplane and depth-dose-profiles, respectively. Comparison of 3D-SDC and full dose calculation in a planning phantom revealed that with ⩾ 5 beams gamma passing rates > 95% can be achieved for central target locations. With a median calculation time of 1:23 min, 3D-SDC of online adapted clinical MR-Linac plans demonstrated a median gamma passing rate of 98.9% compared to full dose calculation, whereas experimental plan QA reached 99.5%. CONCLUSION: Here, we describe the first technical 3D-SDC solution for online adaptive MR-guided radiotherapy. For clinical situations with peripheral targets and a small number of beams additional verification appears necessary. Further improvement may include 3D-SDC with consideration of the magnetic field.

17.
Radiother Oncol ; 159: 197-201, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812912

RESUMO

BACKGROUND AND PURPOSE: Currently clinical radiotherapy (RT) planning consists of a multi-step routine procedure requiring human interaction which often results in a time-consuming and fragmented process with limited robustness. Here we present an autonomous un-supervised treatment planning approach, integrated as basis for online adaptive magnetic resonance guided RT (MRgRT), which was delivered to a prostate cancer patient as a first-in-human experience. MATERIALS AND METHODS: For an intermediate risk prostate cancer patient OARs and targets were automatically segmented using a deep learning-based software and logical volume operators. A baseline plan for the 1.5 T MR-Linac (20x3 Gy) was automatically generated using particle swarm optimization (PSO) without any human interaction. Plan quality was evaluated by predefined dosimetric criteria including appropriate tolerances. Online plan adaptation during clinical MRgRT was defined as first checkpoint for human interaction. RESULTS: OARs and targets were successfully segmented (3 min) and used for automatic plan optimization (300 min). The autonomous generated plan satisfied 12/16 dosimetric criteria, however all remained within tolerance. Without prior human validation, this baseline plan was successfully used during online MRgRT plan adaptation, where 14/16 criteria were fulfilled. As postulated, human interaction was necessary only during plan adaptation. CONCLUSION: Autonomous, un-supervised data preparation and treatment planning was first-in-human shown to be feasible for adaptive MRgRT and successfully applied. The checkpoint for first human intervention was at the time of online MRgRT plan adaptation. Autonomous planning reduced the time delay between simulation and start of RT and may thus allow for real-time MRgRT applications in the future.


Assuntos
Neoplasias da Próstata , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Masculino , Órgãos em Risco , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
18.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810410

RESUMO

The objective of this study is to conduct a qualitative and a quantitative image quality and lesion evaluation in patients undergoing MR-guided radiation therapy (MRgRT) for prostate cancer on a hybrid magnetic resonance imaging and linear accelerator system (MR-Linac or MRL) at 1.5 Tesla. This prospective study was approved by the institutional review board. A total of 13 consecutive patients with biopsy-confirmed prostate cancer and an indication for MRgRT were included. Prior to radiation therapy, each patient underwent an MR-examination on an MRL and on a standard MRI scanner at 3 Tesla (MRI3T). Three readers (two radiologists and a radiation oncologist) conducted an independent qualitative and quantitative analysis of T2-weighted (T2w) and diffusion-weighted images (DWI). Qualitative outcome measures were as follows: zonal anatomy, capsule demarcation, resolution, visibility of the seminal vesicles, geometric distortion, artifacts, overall image quality, lesion conspicuity, and diagnostic confidence. All ratings were performed on an ordinal 4-point Likert scale. Lesion conspicuity and diagnostic confidence were firstly analyzed only on MRL. Afterwards, these outcome parameters were analyzed in consensus with the MRI3T. Quantitative outcome measures were as follows: anteroposterior and right left diameter of the prostate, lesion size, PI-RADS score (Prostate Imaging-Reporting and Data System) and apparent diffusion coefficient (ADC) of the lesions. Intergroup comparisons were computed using the Wilcoxon-sign rank test and t tests. A post-hoc regression analysis was computed for lesion evaluation. Finally, inter-/intra-reader agreement was analyzed using the Fleiss kappa and intraclass correlation coefficient. For T2w images, the MRL showed good results across all quality criteria (median 3 and 4). Furthermore, there were no significant differences between MRL and MRI3T regarding capsule demarcation or geometric distortion. For the DWI, the MRL performed significantly less than MRI3T across most image quality criteria with a median ranging between 2 and 3. However, there were no significant differences between MRL and MRI3T regarding geometric distortion. In terms of lesion conspicuity and diagnostic confidence, inter-reader agreement was fair for MRL alone (Kappa = 0.42) and good for MRL in consensus with MRI3T (Kappa = 0.708). Thus, lesion conspicuity and diagnostic confidence could be significantly improved when reading MRL images in consensus with MRI3T (Odds ratio: 9- to 11-fold for the T2w images and 5- to 8-fold for the DWI) (p < 0.001). For measures of lesion size, anterior-posterior and right-left prostate diameter, inter-reader and intersequence agreement were excellent (ICC > 0.90) and there were no significant differences between MRL and MRI3T among all three readers. In terms of Prostate Imaging Reporting and Data System (PIRADS) scoring, no significant differences were observed between MRL and MRI3T. Finally, there was a significant positive linear relationship between lesion ADC measurements (r = 0.76, p < 0.01) between the ADC values measured on both systems. In conclusion, image quality for T2w was comparable and diagnostic even without administration of spasmolytic- or contrast agents, while DWI images did not reach diagnostic level and need to be optimized for further exploitation in the setting of MRgRT. Diagnostic confidence and lesion conspicuity were significantly improved by reading MRL in consensus with MRI3T which would be advisable for a safe planning and treatment workflow. Finally, ADC measurements of lesions on both systems were comparable indicating that, lesion ADC as measured on the MRL could be used as a biomarker for evaluation of treatment response, similar to examinations using MRI3T.

19.
Clin Transl Radiat Oncol ; 26: 86-91, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33336086

RESUMO

PURPOSE: To compare treatment plans of two different rectal boost strategies: up-front versus adaptive boost at the 1.5 T MR-Linac. METHODS: Patients with locally advanced rectal cancer (LARC) underwent standard neoadjuvant radiochemotherapy with 50.4 Gy in 28 fractions. T2-weighted MRI prior and after the treatment session were acquired to contour gross tumor volumes (GTVs) and organs at risk (OARs). The datasets were used to simulate four different boost strategies (all with 15 Gy/5 fractions in addition to 50.4 Gy): up-front boost (5 daily fractions in the first week of treatment) and an adaptive boost (one boost fraction per week). Both strategies were planned using standard and reduced PTV margins. Intra-fraction motion was assessed by pre- and post-treatment MRI-based contours. RESULTS: Five patients were included and a total of 44 MRI sets were evaluated. The median PTV volumes of the adaptive boost were significantly smaller than for the up-front boost (81.4 cm3 vs 44.4 cm3 for PTV with standard margins; 31.2 cm3 vs 15 cm3 for PTV with reduced margins; p = 0.031). With reduced margins the rectum was significantly better spared with an adaptive boost rather than with an up-front boost: V60Gy and V65Gy were 41.2% and 24.8% compared with 59% and 29.9%, respectively (p = 0.031). Median GTV intra-fractional motion was 2 mm (range 0-8 mm). CONCLUSIONS: The data suggest that the adaptive boost strategy exploiting tumor-shrinkage and reduced margin might result in better sparing of rectum and anal canal. Individual margin assessment, motion management and real-time adaptive radiotherapy appear attractive applications of the 1.5 T MR-Linac for further testing of individualized and safe dose escalation in patients with rectal cancer.

20.
Int J Radiat Oncol Biol Phys ; 109(5): 1606-1618, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33340604

RESUMO

PURPOSE: This prospective study is, to our knowledge, the first report of daily adaptive radiation therapy (ART) for head and neck cancer (HNC) using a 1.5T magnetic resonance imaging-linear accelerator (MR-linac) with particular focus on safety and feasibility and dosimetric results of an online rigid registration-based adapt to position (ATP) workflow. METHODS AND MATERIALS: Ten patients with HNC received daily ART on a 1.5T/7MV MR-linac, 6 using ATP only and 4 using ATP with 1 offline adapt-to-shape replan. Setup variability with custom immobilization masks was assessed by calculating the mean systematic error (M), standard deviation of the systematic error (Σ), and standard deviation of the random error (σ) of the isocenter shifts. Quality assurance was performed with a cylindrical diode array using 3%/3 mm γ criteria. Adaptive treatment plans were summed for each patient to compare the delivered dose with the planned dose from the reference plan. The impact of dosimetric variability between adaptive fractions on the summation plan doses was assessed by tracking the number of optimization constraint violations at each individual fraction. RESULTS: The random errors (mm) for the x, y, and z isocenter shifts, respectively, were M = -0.3, 0.7, 0.1; Σ = 3.3, 2.6, 1.4; and σ = 1.7, 2.9, 1.0. The median (range) γ pass rate was 99.9% (90.9%-100%). The differences between the reference and summation plan doses were -0.61% to 1.78% for the clinical target volume and -11.74% to 8.11% for organs at risk (OARs), although an increase greater than 2% in OAR dose only occurred in 3 cases, each for a single OAR. All cases had at least 2 fractions with 1 or more constraint violations. However, in nearly all instances, constraints were still met in the summation plan despite multiple single-fraction violations. CONCLUSIONS: Daily ART on a 1.5T MR-linac using an online ATP workflow is safe and clinically feasible for HNC and results in delivered doses consistent with planned doses.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Radiocirurgia/métodos , Radioterapia Guiada por Imagem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imobilização/métodos , Imagem por Ressonância Magnética Intervencionista , Masculino , Pessoa de Meia-Idade , Órgãos em Risco/diagnóstico por imagem , Estudos Prospectivos , Radiografia Intervencionista , Radiocirurgia/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia , Fatores de Tempo , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA