Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732121

RESUMO

Today a lot of attention is paid to the formation of thermosensitive systems for biomedical and industrial applications. The development of new methods for synthesis of such systems is a dynamically developing direction in chemistry and materials science. In this regard, this paper presents results of the studies of a new synthesized supramolecular polymer system based on polyethylene glycol and tetrafluoroethylene telomers. The films formed from the polymer substance have the property of switching wettability depending on temperature after heating activation. It has been established that the wettability changes at 60 °C. The contact angle of activated hydrophobic polymer film reaches 143°. Additionally, the system exhibits its properties regardless of the pH of the environment. Based on data obtained by the methods of infrared and x-ray photoelectron spectroscopy, differential thermal analysis and thermal analysis in conjunction with wettability and morphology, a model of the behavior of molecules in a polymer system was built that ensures switching of the hydrophilic/hydrophobic surface state. The resulting polymer system, as well as films based on it, can be used in targeted drug delivery, implantation surgery, as sensors, etc.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Molhabilidade , Polietilenoglicóis/química , Polímeros/química , Temperatura , Espectroscopia Fotoeletrônica
2.
Materials (Basel) ; 13(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560318

RESUMO

Wrought Al-Cu-Mg aluminum alloy (D16) was treated by bipolar plasma electrolytic oxidation to create a base plasma electrolytic oxidation (PEO)-coating with corrosion protection and mechanical properties superior to bare alloy's natural oxide layer. Additional protection was provided by the application of polymer, thus creating a composite coating. Electrochemical and scratch tests, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction studies were performed. Degradation of coatings in the marine atmosphere and seawater was evaluated. The composite polymer-containing coating provided better corrosion protection of aluminum alloy compared to the PEO-coating, although seawater affected both. During the atmospheric exposure, the PEO-coating provided reasonably good protection, and the composite coating showed excellent performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA