Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Exp Med ; 24(1): 122, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856863

RESUMO

Regulatory T cells (Tregs) are known to facilitate tumor progression by suppressing CD8+ T cells within the tumor microenvironment (TME), thereby also hampering the effectiveness of immune checkpoint inhibitors (ICIs). While systemic depletion of Tregs can enhance antitumor immunity, it also triggers undesirable autoimmune responses. Therefore, there is a need for therapeutic agents that selectively target Tregs within the TME without affecting systemic Tregs. In this study, as shown also by others, the chemokine (C-C motif) receptor 8 (CCR8) was found to be predominantly expressed on Tregs within the TME of both humans and mice, representing a unique target for selective depletion of tumor-residing Tregs. Based on this, we developed BAY 3375968, a novel anti-human CCR8 antibody, along with respective surrogate anti-mouse CCR8 antibodies, and demonstrated their in vitro mode-of-action through induction of potent antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) activities. In vivo, anti-mouse CCR8 antibodies effectively depleted Tregs within the TME primarily via ADCP, leading to increased CD8+ T cell infiltration and subsequent tumor growth inhibition across various cancer models. This monotherapeutic efficacy was significantly enhanced in combination with ICIs. Collectively, these findings suggest that CCR8 targeting represents a promising strategy for Treg depletion in cancer therapies. BAY 3375968 is currently under investigation in a Phase I clinical trial (NCT05537740).


Assuntos
Receptores CCR8 , Linfócitos T Reguladores , Microambiente Tumoral , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Receptores CCR8/imunologia , Receptores CCR8/antagonistas & inibidores , Animais , Camundongos , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Citotoxicidade Celular Dependente de Anticorpos , Depleção Linfocítica , Linhagem Celular Tumoral , Fagocitose/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico
2.
Proteomics ; 18(11): e1700390, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603667

RESUMO

For rational design of therapeutic vaccines, detailed knowledge about target epitopes that are endogenously processed and truly presented on infected or transformed cells is essential. Many potential target epitopes (viral or mutation-derived), are presented at low abundance. Therefore, direct detection of these peptides remains a challenge. This study presents a method for the isolation and LC-MS3 -based targeted detection of low-abundant human leukocyte antigen (HLA) class-I-presented peptides from transformed cells. Human papillomavirus (HPV) was used as a model system, as the HPV oncoproteins E6 and E7 are attractive therapeutic vaccination targets and expressed in all transformed cells, but present at low abundance due to viral immune evasion mechanisms. The presented approach included preselection of target antigen-derived peptides by in silico predictions and in vitro binding assays. The peptide purification process was tailored to minimize contaminants after immunoprecipitation of HLA-peptide complexes, while keeping high isolation yields of low-abundant target peptides. The subsequent targeted LC-MS3 detection allowed for increased sensitivity, which resulted in successful detection of the known HLA-A2-restricted epitope E711-19 and ten additional E7-derived peptides on the surface of HPV16-transformed cells. T-cell reactivity was shown for all the 11 detected peptides in ELISpot assays, which shows that detection by our approach has high predictive value for immunogenicity. The presented strategy is suitable for validating even low-abundant candidate epitopes to be true immunotherapy targets.


Assuntos
Cromatografia Líquida/métodos , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Papillomaviridae/imunologia , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Neoplasias do Colo do Útero/metabolismo , Epitopos de Linfócito T/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia
3.
J Proteome Res ; 16(3): 1207-1215, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28176526

RESUMO

For mass spectrometry-based proteomic analyses, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) are the commonly used ionization techniques. To investigate the influence of the ion source on peptide detection in large-scale proteomics, an optimized GeLC/MS workflow was developed and applied either with ESI/MS or with MALDI/MS for the proteomic analysis of different human cell lines of pancreatic origin. Statistical analysis of the resulting data set with more than 72 000 peptides emphasized the complementary character of the two methods, as the percentage of peptides identified with both approaches was as low as 39%. Significant differences between the resulting peptide sets were observed with respect to amino acid composition, charge-related parameters, hydrophobicity, and modifications of the detected peptides and could be linked to factors governing the respective ion yields in ESI and MALDI.


Assuntos
Peptídeos/análise , Proteômica/métodos , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Interações Hidrofóbicas e Hidrofílicas , Pâncreas/citologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
Pancreas ; 46(3): 311-322, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27846146

RESUMO

OBJECTIVES: Pancreatic ductal adenocarcinoma (PDAC) has been subclassified into 3 molecular subtypes: classical, quasi-mesenchymal, and exocrine-like. These subtypes exhibit differences in patient survival and drug resistance to conventional therapies. The aim of the current study is to identify novel subtype-specific protein biomarkers facilitating subtype stratification of patients with PDAC and novel therapy development. METHODS: A set of 12 human patient-derived primary cell lines was used as a starting material for an advanced label-free proteomics approach leading to the identification of novel cell surface and secreted biomarkers. Cell surface protein identification was achieved by in vitro biotinylation, followed by mass spectrometric analysis of purified biotin-tagged proteins. Proteins secreted into a chemically defined serum-free cell culture medium were analyzed by shotgun proteomics. RESULTS: Of 3288 identified proteins, 2 pan-PDAC (protocadherin-1 and lipocalin-2) and 2 exocrine-like-specific (cadherin-17 and galectin-4) biomarker candidates have been validated. Proximity ligation assay analysis of the 2 exocrine-like biomarkers revealed their co-localization on the surface of exocrine-like cells. CONCLUSIONS: The study reports the identification and validation of novel PDAC biomarkers relevant for the development of patient stratification tools. In addition, cadherin-17 and galectin-4 may serve as targets for bispecific antibodies as novel therapeutics in PDAC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Caderinas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Galectina 4/metabolismo , Humanos , Lipocalina-2/metabolismo , Camundongos , Neoplasias Pancreáticas/diagnóstico , Protocaderinas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transplante Heterólogo
5.
Nat Med ; 22(3): 278-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26855150

RESUMO

Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Citocromo P-450 CYP3A/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Queratinas Específicas do Cabelo/metabolismo , Queratinas Tipo II/metabolismo , Neoplasias Pancreáticas/genética , Idoso , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Dasatinibe/uso terapêutico , Cloridrato de Erlotinib/uso terapêutico , Feminino , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Transplante de Neoplasias , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Receptor de Pregnano X , Prognóstico , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Esteroides/metabolismo , Regulação para Cima
6.
Anal Bioanal Chem ; 408(8): 2055-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26493978

RESUMO

Cysteine is unique among the proteinogenic amino acids due to its ability to form disulfide bonds. While this property is of vital importance for protein structures and biological processes, it causes difficulties for the mass spectrometric identification of cysteine-containing peptides. A common approach to overcome these problems in bottom-up proteomics is the reduction and covalent modification of sulfhydryl groups prior to enzymatic digestion. In this study, established alkylating agents and N-maleoyl amino acids with variable hydrophobicity were characterized with respect to a variety of relevant parameters and subsequently evaluated in a large-scale analysis using different ion sources. Depending on the compound, the ion source had a profound impact on the relative and absolute identification of cysteine-containing peptides. The best results were obtained by derivatization of the cysteine residues with 4-vinylpyridine and subsequent matrix-assisted laser desorption ionization (MALDI). Modification with 4-vinylpyridine increased the number of cysteine-containing peptides identified with any other compound using LC-MALDI/MS at least by a factor of 2. This experimental observation is mirrored by differences in the gas-phase basicities, which were computed for methyl thiolate derivatives of the compounds using density functional theory. With electrospray ionization (ESI), complementary use of reagents from three different compound classes, e.g., iodoacetamide, 4-vinylpyridine, and N-maleoyl beta-alanine, was beneficial compared to the application of a single reagent.


Assuntos
Cisteína/análise , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alquilação , Sequência de Aminoácidos , Aminoácidos/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Humanos , Hidrólise , Iodoacetamida/química , Maleatos/química , Modelos Moleculares , Proteômica/métodos , Piridinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA