Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 164: 114967, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290189

RESUMO

Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.


Assuntos
Anti-Infecciosos , Lactoferrina , Humanos , Animais , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Relevância Clínica , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Leite/metabolismo , Mamíferos , Genômica
2.
Cureus ; 15(3): e36293, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36937130

RESUMO

BACKGROUND: The PSMB8 and PSMB9 immunoproteasome genes are essential in cell processes, such as decisions on cell survival or death, the cell cycle, and cellular differentiation. Because recent evidence has demonstrated an immunological role for proteasomes in various malignancies, including urothelial bladder carcinoma (UBC), we evaluated single nucleotide polymorphisms (SNPs) in PSMB9 and PSMB8. We determined any associations between these SNPs and susceptibility to UBC in the Saudi community. METHODS: Samples of genomic DNA were taken from buccal cells of 111 patients with UBC and 78 healthy controls. TaqMan Real-Time PCR was used to determine genotype distributions and allele frequencies for the PSMB9 rs17587 G>A and PSMB8 rs2071543 G>T SNPs. We used SNPStats (https://www.snpstats.net) to choose each SNP's best interactive inheritance model. RESULTS: The PSMB9 rs17587 SNP was associated with the risk of UBC (odds ratio [OR] = 5.21, P < 0.0001). In contrast, the PSMB8 rs2071543 SNP showed no association with UBC risk (OR = 1.13, P = 0.7871). In terms of genotypic distribution, the rs17587 G>A SNP was more frequent in UBC cases than controls in both the dominant (OR = 7.5; 95% confidence interval, 3.7-15.1; P = 0.0051) and recessive (OR = 17.11, 95% confidence interval 5.1-57.4; P = 0.0026) models. Genotypic distribution of the PSMB8 rs2071543 G>T SNP was not significantly different between cases and controls in any interactive inheritance models (P > 0.05). CONCLUSION: These results suggest a potential role for PSMB9 as a biomarker for increased UBC risk. Discovering more genetic variants within immunoproteasome genes related to antigen presentation could help further our understanding of this risk.

3.
Life (Basel) ; 13(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36983807

RESUMO

Many species belonging to the genus Ocimum are used for aromatic, medicinal, and cosmetic purposes. The essential oil (OFEO) obtained by hydrodistillation of the flowering aerial parts of Forsskal's Basil "Ocimum forskolei Benth" growing in extreme environmental conditions in Mecca Region, Saudi Arabia was analyzed by GC-MS. The main constituents were phenylpropanoids (methyl eugenol 55.65% and eugenol 11.66%), monoterpene (linalool 9.75%), and sesquiterpenes (germacrene D 3.72% and ß-caryophyllene 2.57%). The OFEO was tested against MCF7, HT29, and HCT116 cancer cells and compared with normal fibroblast cells (MRC5). The MTT assay showed that HCT116 was more sensitive to OFEO (IC50 5.34 µg/mL), which reduced the number of HCT116 colonies at 6 µg/mL, while causing complete colony death at 12 and 24 µg/mL. Western Blotting and qRT-PCR were used to evaluate the level change of different proteins with respect to GAPDH. OFEO upregulated the apoptotic protein (caspase 3), and downregulated the cell proliferation proteins (AKT and pAKT), cell cycle arrest (PCNA, Cyclin D1), and the anti-apoptotic Bcl2 proteins. OFEO was also tested against reference strains of Gram-negative and Gram-positive bacteria including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, and Staphylococcus aureus by using the well-diffusion and assessing their MICs, which ranged from 250 to 500 µg/mL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA