Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20495, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993510

RESUMO

The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Ratos , Feminino , Animais , Kisspeptinas/metabolismo , Hormônio Luteinizante/farmacologia , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismo , Dinorfinas/metabolismo , Neurônios/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo
2.
J Reprod Dev ; 69(5): 227-238, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37518187

RESUMO

Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats. The resulting male Kiss1-KpKO rats lacked Kiss1 expression in the brain and exhibited hypogonadotropic hypogonadism, similar to the hypogonadal phenotype of global Kiss1 KO rats. Histological analysis of Kiss1 neurons in Kiss1-Cre-activated tdTomato reporter rats revealed that tdTomato signals in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were not affected by estrogen, and that tdTomato signals in the ARC, AVPV, and medial amygdala (MeA) were sexually dimorphic. Notably, neonatal AVPV tdTomato signals were detected only in males, but a larger number of tdTomato-expressing cells were detected in the AVPV and ARC, and a smaller number of cells in the MeA was detected in females than in males at postpuberty. These findings suggest that Kiss1-visualized rats can be used to examine the effect of estrogen feedback mechanisms on Kiss1 expression in the AVPV and ARC. Moreover, the Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses of sexual differentiation in the brain and the physiological role of kisspeptin neurons across the brain in rats.


Assuntos
Kisspeptinas , Caracteres Sexuais , Ratos , Animais , Feminino , Masculino , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Neurônios/metabolismo , Mamíferos/metabolismo
3.
J Reprod Dev ; 68(3): 190-197, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249910

RESUMO

Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.


Assuntos
Interneurônios , Kisspeptinas , Lactação , Hormônio Luteinizante , Receptores de Somatostatina , Somatostatina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Interneurônios/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactação/metabolismo , Hormônio Luteinizante/metabolismo , N-Metilaspartato/metabolismo , Oligopeptídeos/farmacologia , Ratos , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
4.
Mol Reprod Dev ; 89(3): 129-132, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170139

RESUMO

Gene editing in mammalian zygotes enables us to generate genetically modified animals rapidly and efficiently. In this study, we compare multiple gene targeting strategies in rat zygotes by generating a novel knock-in reporter rat line to visualize the expression pattern of transcription factor AP-2 gamma (Tfap2c). The targeting vector is designed to replace the stop codon of Tfap2c with T2A-tdTomato sequence. We show that the combination of electroporation-mediated transduction of CRISPR/Cas9 components with adeno-associated virus-mediated transduction of the targeting vector is the most efficient in generating the targeted rat line. The Tfap2c-T2A-tdTomato fluorescence reflects the endogenous expression pattern of Tfap2c in preimplantation embryo, germline, placenta, and forebrain during rat embryo development. The reporter line generated here will be a reliable resource for identifying and purifying Tfap2c expressing cells in rats, and the gene targeting strategy we used can be widely applied for generating desired animals.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Animais , Dependovirus/genética , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes , Proteínas Luminescentes , Mamíferos/genética , Gravidez , Ratos , Zigoto/metabolismo , Proteína Vermelha Fluorescente
5.
Front Endocrinol (Lausanne) ; 12: 724632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566891

RESUMO

Increasing evidence accumulated during the past two decades has demonstrated that the then-novel kisspeptin, which was discovered in 2001, the known neuropeptides neurokinin B and dynorphin A, which were discovered in 1983 and 1979, respectively, and their G-protein-coupled receptors, serve as key molecules that control reproduction in mammals. The present review provides a brief historical background and a summary of our recent understanding of the roles of hypothalamic neurons expressing kisspeptin, neurokinin B, and dynorphin A, referred to as KNDy neurons, in the central mechanism underlying gonadotropin-releasing hormone (GnRH) pulse generation and subsequent tonic gonadotropin release that controls mammalian reproduction.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/fisiologia , Reprodução/fisiologia , Animais , Dinorfinas/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Kisspeptinas/metabolismo , Mamíferos , Neurocinina B/metabolismo , Neurônios/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500349

RESUMO

The gonadotropin-releasing hormone (GnRH) pulse is fundamental for mammalian reproduction: GnRH pulse regimens are needed as therapies for infertile women as continuous GnRH treatment paradoxically inhibits gonadotropin release. Circumstantial evidence suggests that the hypothalamic arcuate KNDy neurons expressing kisspeptin (encoded by Kiss1), neurokinin B (encoded by Tac3), and dynorphin A serve as a GnRH pulse generator; however, no direct evidence is currently available. Here, we show that rescuing >20% KNDy neurons by transfecting Kiss1 inside arcuate Tac3 neurons, but not outside of these neurons, recovered folliculogenesis and luteinizing hormone (LH) pulses, an indicator of GnRH pulses, in female global Kiss1 knockout (KO) rats and that >90% conditional arcuate Kiss1 KO in newly generated Kiss1-floxed rats completely suppressed LH pulses. These results first provide direct evidence that KNDy neurons are the GnRH pulse generator, and at least 20% of KNDy neurons are sufficient to maintain folliculogenesis via generating GnRH/gonadotropin pulses.


Assuntos
Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Organogênese , Folículo Ovariano/crescimento & desenvolvimento , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Aromatase/genética , Aromatase/metabolismo , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Integrases/metabolismo , Hormônio Luteinizante/sangue , Tamanho do Órgão , Folículo Ovariano/metabolismo , Hipófise/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores LHRH/metabolismo
7.
J Reprod Dev ; 66(4): 359-367, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32307336

RESUMO

The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of Cre expression.


Assuntos
Hipogonadismo/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neurônios/metabolismo , Animais , Hipogonadismo/metabolismo , Kisspeptinas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
8.
J Reprod Dev ; 65(5): 397-406, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31155522

RESUMO

Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70-80 g by 49 days of age. Then, animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus gonadotropin secretion and follicular development in female rats.


Assuntos
Ração Animal , Encefalinas/metabolismo , Kisspeptinas/metabolismo , Precursores de Proteínas/metabolismo , Maturidade Sexual , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Encéfalo/patologia , Feminino , Privação de Alimentos , Transtornos do Crescimento/fisiopatologia , Hipotálamo Anterior/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Ratos , Ratos Wistar , Útero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA