Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(1): 113608, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117649

RESUMO

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Assuntos
Antineoplásicos , Transtornos Mieloproliferativos , Neoplasias , Humanos , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Leucócitos Mononucleares/metabolismo , Hematopoese
2.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000021

RESUMO

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/genética , Toxinas Urêmicas , Remodelação Ventricular , Insuficiência Cardíaca/etiologia
3.
Cell Rep ; 42(2): 112131, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807143

RESUMO

Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.


Assuntos
Macrófagos , Miofibroblastos , Humanos , Fibrose , Ligantes , Macrófagos/metabolismo , Miofibroblastos/metabolismo , Osteopontina , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo
4.
Nat Genet ; 54(11): 1690-1701, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303074

RESUMO

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Adulto , Humanos , Rim Policístico Autossômico Dominante/genética , Canais de Cátion TRPP/genética , Organoides , Rim , Antígeno CD24/genética
5.
Exp Hematol ; 110: 28-33, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341805

RESUMO

Within the heterogenous pool of bone marrow stromal cells, mesenchymal stromal cells (MSCs) are of particular interest because of their hematopoiesis-supporting capacities, contribution to disease progression, therapy resistance, and leukemic initiation. Cultured bone marrow-derived stromal cells (cBMSCs) are used for in vitro modeling of hematopoiesis-stroma interactions, validation of disease mechanisms, and screening for therapeutic targets. Here, we place cBMSCs (mouse and human) in a bone marrow tissue context by systematically comparing the transcriptome of plastic-adherent cells on a single-cell level with in vivo counterparts. Cultured BMSCs encompass a rather homogenous cell population, independent of the isolation method used and, although still possessing hematopoiesis-supporting capacity, are distinct from freshly isolated MSCs and more akin to in vivo fibroblast populations. Informed by combined cell trajectories and pathway analyses, we illustrate that TGFb inhibition in vitro can preserve a more "MSC"-like phenotype.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Fibroblastos , Hematopoese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Célula Única
6.
Front Plant Sci ; 12: 668623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305969

RESUMO

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid Saccharum spontaneum (Ssp) and Sorghum bicolor (Sbi), a close diploid relative. The Sbi kinome was composed of 1,210 PKs; for Ssp, we identified 2,919 PKs when disregarding duplications and allelic copies, and these were related to 1,345 representative gene models. The Ssp and Sbi PKs were grouped into 20 groups and 120 subfamilies and exhibited high compositional similarities and evolutionary divergences. By utilizing the collinearity between the species, this study offers insights into Sbi and Ssp speciation, PK differentiation and selection. We assessed the PK subfamily expression profiles via RNA-Seq and identified significant similarities between Sbi and Ssp. Moreover, coexpression networks allowed inference of a core structure of kinase interactions with specific key elements. This study provides the first categorization of the allelic specificity of a kinome and offers a wide reservoir of molecular and genetic information, thereby enhancing the understanding of Sbi and Ssp PK evolutionary history.

7.
Bioinformatics ; 37(22): 4263-4265, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-35032393

RESUMO

MOTIVATION: Ligand-receptor (LR) network analysis allows the characterization of cellular crosstalk based on single cell RNA-seq data. However, current methods typically provide a list of inferred LR interactions and do not allow the researcher to focus on specific cell types, ligands or receptors. In addition, most of these methods cannot quantify changes in crosstalk between two biological phenotypes. RESULTS: CrossTalkeR is a framework for network analysis and visualization of LR interactions. CrossTalkeR identifies relevant ligands, receptors and cell types contributing to changes in cell communication when contrasting two biological phenotypes, i.e. disease versus homeostasis. A case study on scRNA-seq of human myeloproliferative neoplasms reinforces the strengths of CrossTalkeR for characterization of changes in cellular crosstalk in disease. AVAILABILITY AND IMPLEMENTATION: CrosstalkeR is an R package available at: Github: https://github.com/CostaLab/CrossTalkeR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Célula Única , Software , Perfilação da Expressão Gênica , Humanos , Ligantes , Análise de Sequência de RNA
8.
Cell Stem Cell ; 28(4): 637-652.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301706

RESUMO

Functional contributions of individual cellular components of the bone-marrow microenvironment to myelofibrosis (MF) in patients with myeloproliferative neoplasms (MPNs) are incompletely understood. We aimed to generate a comprehensive map of the stroma in MPNs/MFs on a single-cell level in murine models and patient samples. Our analysis revealed two distinct mesenchymal stromal cell (MSC) subsets as pro-fibrotic cells. MSCs were functionally reprogrammed in a stage-dependent manner with loss of their progenitor status and initiation of differentiation in the pre-fibrotic and acquisition of a pro-fibrotic and inflammatory phenotype in the fibrotic stage. The expression of the alarmin complex S100A8/S100A9 in MSC marked disease progression toward the fibrotic phase in murine models and in patient stroma and plasma. Tasquinimod, a small-molecule inhibiting S100A8/S100A9 signaling, significantly ameliorated the MPN phenotype and fibrosis in JAK2V617F-mutated murine models, highlighting that S100A8/S100A9 is an attractive therapeutic target in MPNs.


Assuntos
Células-Tronco Mesenquimais , Transtornos Mieloproliferativos , Mielofibrose Primária , Alarminas , Animais , Medula Óssea , Humanos , Camundongos
9.
Sci Rep ; 10(1): 20057, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208862

RESUMO

Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust resistance is a desirable characteristic due to the large economic impact of the disease. Although marker-assisted selection for rust resistance has been successful, the genes involved are still unknown, and the associated regions vary among cultivars, thus restricting methodological generalization. We used genotyping by sequencing of full-sib progeny to relate genomic regions with brown rust phenotypes. We established a pipeline to identify reliable SNPs in complex polyploid data, which were used for phenotypic prediction via machine learning. We identified 14,540 SNPs, which led to a mean prediction accuracy of 50% when using different models. We also tested feature selection algorithms to increase predictive accuracy, resulting in a reduced dataset with more explanatory power for rust phenotypes. As a result of this approach, we achieved an accuracy of up to 95% with a dataset of 131 SNPs related to brown rust QTL regions and auxiliary genes. Therefore, our novel strategy has the potential to assist studies of the genomic organization of brown rust resistance in sugarcane.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Genômica/métodos , Aprendizado de Máquina , Doenças das Plantas/genética , Saccharum/genética , Saccharum/microbiologia , Mapeamento Cromossômico , Genes de Plantas , Genoma de Planta , Genótipo , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA