Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(11): 2203-2221, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37802075

RESUMO

Intercellular cytoplasmic material transfer (MT) occurs between transplanted and developing photoreceptors and ambiguates cell origin identification in developmental, transdifferentiation, and transplantation experiments. Whether MT is a photoreceptor-specific phenomenon is unclear. Retinal ganglion cell (RGC) replacement, through transdifferentiation or transplantation, holds potential for restoring vision in optic neuropathies. During careful assessment for MT following human stem cell-derived RGC transplantation into mice, we identified RGC xenografts occasionally giving rise to labeling of donor-derived cytoplasmic, nuclear, and mitochondrial proteins within recipient Müller glia. Critically, nuclear organization is distinct between human and murine retinal neurons, which enables unequivocal discrimination of donor from host cells. MT was greatly facilitated by internal limiting membrane disruption, which also augments retinal engraftment following transplantation. Our findings demonstrate that retinal MT is not unique to photoreceptors and challenge the isolated use of species-specific immunofluorescent markers for xenotransplant identification. Assessment for MT is critical when analyzing neuronal replacement interventions.


Assuntos
Retina , Neurônios Retinianos , Animais , Humanos , Camundongos , Retina/metabolismo , Células Ganglionares da Retina , Neuroglia/metabolismo , Células Fotorreceptoras
2.
Food Chem (Oxf) ; 6: 100167, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36875800

RESUMO

Jaboticaba peel (Myrciaria jaboticaba) is a source of bioactive compounds. We investigated the anticancer activity of ethyl acetate extract (JE1) and hydroethanolic extract (JE2) of Jaboticaba peel against breast cancer. Both JE1 and JE2 inhibited clonogenic potential of MDA-MB-231 cells while JE1 was particularly effective in MCF7 cells. Anchorage-independent growth and cell viability was also inhibited by JE1 and JE2. In addition to growth inhibition, JE1 and JE2 could also inhibit migration and invasion of cells. Interestingly, JE1 and JE2 show selective inhibition towards certain breast cancer cells and biological processes. Mechanistic evaluations showed that JE1 induced PARP cleavage, BAX and BIP indicating apoptotic induction. An elevation of phosphorylated ERK was observed in MCF7 cells in response to JE1 and JE2 along with increased IRE-α and CHOP expression indicating increased endoplasmic stress. Therefore, Jaboticaba peel extracts could be potentially considered for further development for breast cancer inhibition.

3.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897659

RESUMO

Hepatocellular carcinoma (HCC) incidence, as well as related mortality, has been steadily increasing in the USA and across the globe, partly due to the lack of effective therapeutic options for advanced HCC. Though sorafenib is considered standard-of-care for advanced HCC, it only improves median survival by a few months when compared to placebo. Sorafenib is also associated with several unpleasant side effects that often lead to early abatement of therapy. Here, we investigate whether a combination regimen including low-dose sorafenib and a non-toxic dose of anti-diabetic drug metformin can achieve effective inhibition of HCC. Indeed, combining metformin with low-dose sorafenib inhibited growth, proliferation, migration, and invasion potential of HCC cells. We observed a 5.3- and 1.9-fold increase in sub-G1 population in the combination treatment compared to sorafenib alone. We found that the combination of metformin enhanced the efficacy of sorafenib and inhibited the MAPK/ERK/Stat3 axis. Our in vivo studies corroborated the in vitro findings, and mice harboring HepG2-derived tumors showed effective tumor reduction upon treatment with low-dose sorafenib and metformin combination. This work sheds light on a therapeutic strategy aiming to augment sorafenib efficacy or dose-de-escalation that may prove beneficial in circumventing sorafenib resistance as well as minimizing related side effects.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Elife ; 102021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889737

RESUMO

Mortality from triple negative breast cancer (TNBC) is significantly higher in African American (AA) women compared to White American (WA) women emphasizing ethnicity as a major risk factor; however, the molecular determinants that drive aggressive progression of AA-TNBC remain elusive. Here, we demonstrate for the first time that AA-TNBC cells are inherently aggressive, exhibiting elevated growth, migration, and cancer stem-like phenotype compared to WA-TNBC cells. Meta-analysis of RNA-sequencing data of multiple AA- and WA-TNBC cell lines shows enrichment of GLI1 and Notch1 pathways in AA-TNBC cells. Enrichment of GLI1 and Notch1 pathway genes was observed in AA-TNBC. In line with this observation, analysis of TCGA dataset reveals a positive correlation between GLI1 and Notch1 in AA-TNBC and a negative correlation in WA-TNBC. Increased nuclear localization and interaction between GLI1 and Notch1 is observed in AA-TNBC cells. Of importance, inhibition of GLI1 and Notch1 synergistically improves the efficacy of chemotherapy in AA-TNBC cells. Combined treatment of AA-TNBC-derived tumors with GANT61, DAPT, and doxorubicin/carboplatin results in significant tumor regression, and tumor-dissociated cells show mitigated migration, invasion, mammosphere formation, and CD44+/CD24- population. Indeed, secondary tumors derived from triple-therapy-treated AA-TNBC tumors show diminished stem-like phenotype. Finally, we show that TNBC tumors from AA women express significantly higher level of GLI1 and Notch1 expression in comparison to TNBC tumors from WA women. This work sheds light on the racial disparity in TNBC, implicates the GLI1 and Notch1 axis as its functional mediators, and proposes a triple-combination therapy that can prove beneficial for AA-TNBC.


Assuntos
Progressão da Doença , Receptor Notch1/genética , Neoplasias de Mama Triplo Negativas/fisiopatologia , Proteína GLI1 em Dedos de Zinco/genética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Receptor Notch1/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Estados Unidos/etnologia , Proteína GLI1 em Dedos de Zinco/metabolismo
5.
NPJ Breast Cancer ; 7(1): 105, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389732

RESUMO

Obese women with hormone receptor-positive breast cancer exhibit poor response to therapy and inferior outcomes. However, the underlying molecular mechanisms by which obesity/hyperleptinemia may reduce the efficacy of hormonal therapy remain elusive. Obese mice with hyperleptinemia exhibit increased tumor progression and respond poorly to tamoxifen compared to non-obese mice. Exogenous leptin abrogates tamoxifen-mediated growth inhibition and potentiates breast tumor growth even in the presence of tamoxifen. Mechanistically, leptin induces nuclear translocation of phosphorylated-ER and increases the expression of ER-responsive genes, while reducing tamoxifen-mediated gene repression by abrogating tamoxifen-induced recruitment of corepressors NCoR, SMRT, and Mi2 and potentiating coactivator binding. Furthermore, in silico analysis revealed that coactivator Med1 potentially associates with 48 (out of 74) obesity-signature genes. Interestingly, leptin upregulates Med1 expression by decreasing miR-205, and increases its functional activation via phosphorylation, which is mediated by activation of Her2 and EGFR. It is important to note that Med1 silencing abrogates the negative effects of leptin on tamoxifen efficacy. In addition, honokiol or adiponectin treatment effectively inhibits leptin-induced Med1 expression and improves tamoxifen efficacy in hyperleptinemic state. These studies uncover the mechanistic insights how obese/hyperleptinemic state may contribute to poor response to tamoxifen implicating leptin-miR205-Med1 and leptin-Her2-EGFR-Med1 axes, and present bioactive compound honokiol and adipocytokine adiponectin as agents that can block leptin's negative effect on tamoxifen.

6.
Cancer Discov ; 11(5): 1138-1157, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33408241

RESUMO

The existence of distinct breast microbiota has been recently established, but their biological impact in breast cancer remains elusive. Focusing on the shift in microbial community composition in diseased breast compared with normal breast, we identified the presence of Bacteroides fragilis in cancerous breast. Mammary gland as well as gut colonization with enterotoxigenic Bacteroides fragilis (ETBF), which secretes B. fragilis toxin (BFT), rapidly induces epithelial hyperplasia in the mammary gland. Breast cancer cells exposed to BFT exhibit "BFT memory" from the initial exposure. Intriguingly, gut or breast duct colonization with ETBF strongly induces growth and metastatic progression of tumor cells implanted in mammary ducts, in contrast to nontoxigenic Bacteroides fragilis. This work sheds light on the oncogenic impact of a procarcinogenic colon bacterium ETBF on breast cancer progression, implicates the ß-catenin and Notch1 axis as its functional mediators, and proposes the concept of "BFT memory" that can have far-reaching biological implications after initial exposure to ETBF. SIGNIFICANCE: B. fragilis is an inhabitant of breast tissue, and gut or mammary duct colonization with ETBF triggers epithelial hyperplasia and augments breast cancer growth and metastasis. Short-term exposure to BFT elicits a "BFT memory" with long-term implications, functionally mediated by the ß-catenin and Notch1 pathways.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Bacteroides fragilis , Neoplasias da Mama/patologia , Colo/microbiologia , Animais , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , beta Catenina/metabolismo
7.
Cell Death Discov ; 6: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963809

RESUMO

Cancer cells hijack autophagy pathway to evade anti-cancer therapeutics. Many molecular signaling pathways associated with drug-resistance converge on autophagy induction. Honokiol (HNK), a natural phenolic compound purified from Magnolia grandiflora, has recently been shown to impede breast tumorigenesis and, in the present study, we investigated whether breast cancer cells evoke autophagy to modulate therapeutic efficacy and functional networks of HNK. Indeed, breast cancer cells exhibit increased autophagosomes-accumulation, MAP1LC3B-II/LC3B-II-conversion, expression of ATG proteins as well as elevated fusion of autophagosomes and lysosomes upon HNK treatment. Breast cancer cells treated with HNK demonstrate significant growth inhibition and apoptotic induction, and these biological processes are blunted by macroautophagy/autophagy. Consequently, inhibiting autophagosome formation, abrogating autophagosome-lysosome fusion or genetic-knockout of BECN1 and ATG7 effectively increase HNK-mediated apoptotic induction and growth inhibition. Next, we explored the functional impact of tumor suppressor STK11 in autophagy induction in HNK-treated cells. STK11-silencing abrogates LC3B-II-conversion, and blocks autophagosome/lysosome fusion and lysosomal activity as illustrated by LC3B-Rab7 co-staining and DQ-BSA assay. Our results exemplify the cytoprotective nature of autophagy invoked in HNK-treated breast cancer cells and put forth the notion that a combined strategy of autophagy inhibition with HNK would be more effective. Indeed, HNK and chloroquine (CQ) show synergistic inhibition of breast cancer cells and HNK-CQ combination treatment effectively inhibits breast tumorigenesis and metastatic progression. Tumor-dissociated cells from HNK-CQ treated tumors exhibit abrogated invasion and migration potential. Together, these results implicate that breast cancer cells undergo cytoprotective autophagy to circumvent HNK and a combined treatment with HNK and CQ can be a promising therapeutic strategy for breast cancer.

8.
Carcinogenesis ; 40(9): 1110-1120, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30698683

RESUMO

Withaferin A (WFA), a steroidal lactone, negatively regulates breast cancer growth however, its mechanisms of action remain largely elusive. We found that WFA blocks autophagy flux and lysosomal proteolytic activity in breast cancer cells. WFA increases accumulation of autophagosomes, LC3B-II conversion, expression of autophagy-related proteins and autophagosome/lysosome fusion. Autolysosomes display the characteristics of acidic compartments in WFA-treated cells; however, the protein degradation activity of lysosomes is inhibited. Blockade of autophagic flux reduces the recycling of cellular fuels leading to insufficient substrates for tricarboxylic acid (TCA) cycle and impaired oxidative phosphorylation. WFA decreases expression and phosphorylation of lactate dehydrogenase, the key enzyme that catalyzes pyruvate-to-lactate conversion, reduces adenosine triphosphate levels and increases AMP-activated protein kinase (AMPK) activation. AMPK inhibition abrogates while AMPK activation potentiates WFA's effect. WFA and 2-deoxy-d-glucose combination elicits synergistic inhibition of breast cancer cells. Genetic knockout of BECN1 and ATG7 fails to rescue cells from WFA treatment; in contrast, addition of methyl pyruvate to supplement TCA cycle protects WFA-treated cells. Together, these results implicate that WFA is a potent lysosomal inhibitor; energetic impairment is required for WFA-induced apoptosis and growth inhibition and combining WFA and 2-DG is a promising therapeutic strategy for breast cancer.

9.
Sci Rep ; 7(1): 17943, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263422

RESUMO

Hepatocellular carcinoma (HCC) has the second lowest 5-year survival rate (~16%) of all tumor types partly owing to the lack of effective therapeutic agents. Withaferin A (WA) is a bioactive molecule derived from Withania somnifera and the present study is designed to systemically investigate the anti-HCC efficacy of WA. WA inhibited growth, migration and invasion of HCC cells. Using a phospho-kinase screening array, we discovered that WA increased phosphorylation of ERK and p38 in HCC. Further analyses revealed a key role of ERK leading to increased phosphorylation of p90-ribosomal S6 kinase (RSK) and a concomitant activation of ETS-like transcription factor-1(ELK1) and Death Receptor protein-5 (DR5) in HCC. Importantly, oral administration of WA effectively inhibited HepG2-xenografts and DEN-induced-HCC in C57BL/6 mice. Analyses of WA-treated HepG2-xenografts and DEN-induced-HCC tumors showed elevated levels of ERK, RSK, ELK1 and DR5 along with decreased expression of Ki67. In silico analyses of HCC, utilizing published profiling studies showed an inverse correlation between DR5 and Ki67. These data showed the efficacy of WA as an effective agent for HCC inhibition and provided first in vitro and in vivo evidence supporting the key role of a novel crosstalk between WA, ERK/RSK, ELK1, and DR5 in HCC inhibition.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Vitanolídeos/uso terapêutico , Proteínas Elk-1 do Domínio ets/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus
10.
Autophagy ; 13(8): 1386-1403, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28696138

RESUMO

ADIPOQ/adiponectin, an adipocytokine secreted by adipocytes in the breast tumor microenvironment, negatively regulates cancer cell growth hence increased levels of ADIPOQ/adiponectin are associated with decreased breast cancer growth. However, its mechanisms of action remain largely elusive. We report that ADIPOQ/adiponectin induces a robust accumulation of autophagosomes, increases MAP1LC3B-II/LC3B-II and decreases SQSTM1/p62 in breast cancer cells. ADIPOQ/adiponectin-treated cells and xenografts exhibit increased expression of autophagy-related proteins. LysoTracker Red-staining and tandem-mCherry-GFP-LC3B assay show that fusion of autophagosomes and lysosomes is augmented upon ADIPOQ/adiponectin treatment. ADIPOQ/adiponectin significantly inhibits breast cancer growth and induces apoptosis both in vitro and in vivo, and these events are preceded by macroautophagy/autophagy, which is integral for ADIPOQ/adiponectin-mediated cell death. Accordingly, blunting autophagosome formation, blocking autophagosome-lysosome fusion or genetic-knockout of BECN1/Beclin1 and ATG7 effectively impedes ADIPOQ/adiponectin induced growth-inhibition and apoptosis-induction. Mechanistic studies show that ADIPOQ/adiponectin reduces intracellular ATP levels and increases PRKAA1 phosphorylation leading to ULK1 activation. AMPK-inhibition abrogates ADIPOQ/adiponectin-induced ULK1-activation, LC3B-turnover and SQSTM1/p62-degradation while AMPK-activation potentiates ADIPOQ/adiponectin's effects. Further, ADIPOQ/adiponectin-mediated AMPK-activation and autophagy-induction are regulated by upstream master-kinase STK11/LKB1, which is a key node in antitumor function of ADIPOQ/adiponectin as STK11/LKB1-knockout abrogates ADIPOQ/adiponectin-mediated inhibition of breast tumorigenesis and molecular analyses of tumors corroborate in vitro mechanistic findings. ADIPOQ/adiponectin increases the efficacy of chemotherapeutic agents. Notably, high expression of ADIPOQ receptor ADIPOR2, ADIPOQ/adiponectin and BECN1 significantly correlates with increased overall survival in chemotherapy-treated breast cancer patients. Collectively, these data uncover that ADIPOQ/adiponectin induces autophagic cell death in breast cancer and provide in vitro and in vivo evidence for the integral role of STK11/LKB1-AMPK-ULK1 axis in ADIPOQ/adiponectin-mediated cytotoxic autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/farmacologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Beclina-1/metabolismo , Biomarcadores/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Camundongos , Fosforilação/efeitos dos fármacos
12.
Sci Rep ; 7: 40070, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071670

RESUMO

Functional reactivation of p53 pathway, although arduous, can potentially provide a broad-based strategy for cancer therapy owing to frequent p53 inactivation in human cancer. Using a phosphoprotein-screening array, we found that Benzyl Isothiocynate, (BITC) increases p53 phosphorylation in breast cancer cells and reveal an important role of ERK and PRAS40/MDM2 in BITC-mediated p53 activation. We show that BITC rescues and activates p53-signaling network and inhibits growth of p53-mutant cells. Mechanistically, BITC induces p73 expression in p53-mutant cells, disrupts the interaction of p73 and mutant-p53, thereby releasing p73 from sequestration and allowing it to be transcriptionally active. Furthermore, BITC-induced p53 and p73 axes converge on tumor-suppressor LKB1 which is transcriptionally upregulated by p53 and p73 in p53-wild-type and p53-mutant cells respectively; and in a feed-forward mechanism, LKB1 tethers with p53 and p73 to get recruited to p53-responsive promoters. Analyses of BITC-treated xenografts using LKB1-null cells corroborate in vitro mechanistic findings and establish LKB1 as the key node whereby BITC potentiates as well as rescues p53-pathway in p53-wild-type as well as p53-mutant cells. These data provide first in vitro and in vivo evidence of the integral role of previously unrecognized crosstalk between BITC, p53/LKB1 and p73/LKB1 axes in breast tumor growth-inhibition.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/patologia , Isotiocianatos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Linhagem Celular Tumoral , Humanos , Fosfoproteínas/análise , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/análise
13.
Mol Oncol ; 10(7): 1118-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259808

RESUMO

The tumor suppressor p53 plays a critical role in suppressing cancer growth and progression and is an attractive target for the development of new targeted therapies. We synthesized several indolo-pyrido-isoquinolin based alkaloids to activate p53 function and examined their therapeutic efficacy using NCI-60 screening. Here, we provide molecular evidence that one of these compounds, 11-methoxy-2,3,4,13-tetrahydro-1H-indolo[2',3':3,4]pyrido[1,2-b]isoquinolin-6-ylium-bromide (termed P18 or NSC-768219) inhibits growth and clonogenic potential of cancer cells. P18 treatment results in downregulation of mesenchymal markers and concurrent upregulation of epithelial markers as well as inhibition of migration and invasion. Experimental epithelial-mesenchymal-transition (EMT) induced by exposure to TGFß/TNFα is also completely reversed by P18. Importantly, P18 also inhibits mammosphere-formation along with a reduction in the expression of stemness factors, Oct4, Nanog and Sox2. We show that P18 induces expression, phosphorylation and accumulation of p53 in cancer cells. P18-mediated induction of p53 leads to increased nuclear localization and elevated expression of p53 target genes. Using isogenic cancer cells differing only in p53 status, we show that p53 plays an important role in P18-mediated alteration of mesenchymal and epithelial genes, inhibition of migration and invasion of cancer cells. Furthermore, P18 increases miR-34a expression in p53-dependent manner and miR-34a is integral for P18-mediated inhibition of growth, invasion and mammosphere-formation. miR-34a mimics potentiate P18 efficacy while miR-34a antagomirs antagonize P18. Collectively, these data provide evidence that P18 may represent a promising therapeutic strategy for the inhibition of growth and progression of breast cancer and p53-miR-34a axis is important for P18 function.


Assuntos
Alcaloides/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Isoquinolinas/farmacologia , MicroRNAs/metabolismo , Piridinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Alcaloides/química , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Clonais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Isoquinolinas/química , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação/efeitos dos fármacos , Piridinas/química , Alcaloides de Triptamina e Secologanina/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Fator de Crescimento Transformador beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos
14.
Oncotarget ; 6(30): 29947-62, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26359358

RESUMO

Leptin, a major adipocytokine produced by adipocytes, is emerging as a key molecule linking obesity with breast cancer therefore, it is important to find effective strategies to antagonize oncogenic effects of leptin to disrupt obesity-cancer axis. Here, we examine the potential of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, as a leptin-antagonist and systematically elucidate the underlying mechanisms. HNK inhibits leptin-induced epithelial-mesenchymal-transition (EMT), and mammosphere-formation along with a reduction in the expression of stemness factors, Oct4 and Nanog. Investigating the downstream mediator(s), that direct leptin-antagonist actions of HNK; we discovered functional interactions between HNK, LKB1 and miR-34a. HNK increases the expression and cytoplasmic-localization of LKB1 while HNK-induced SIRT1/3 accentuates the cytoplasmic-localization of LKB1. We found that HNK increases miR-34a in LKB1-dependent manner as LKB1-silencing impedes HNK-induced miR-34a which can be rescued by LKB1-overexpression. Finally, an integral role of miR-34a is discovered as miR-34a mimic potentiates HNK-mediated inhibition of EMT, Zeb1 expression and nuclear-localization, mammosphere-formation, and expression of stemness factors. Leptin-antagonist actions of HNK are further enhanced by miR-34a mimic whereas miR-34a inhibitor results in inhibiting HNK's effect on leptin. These data provide evidence for the leptin-antagonist potential of HNK and reveal the involvement of LKB1 and miR-34a.


Assuntos
Compostos de Bifenilo/farmacologia , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leptina/farmacologia , Lignanas/farmacologia , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antineoplásicos Fitogênicos/farmacologia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Camundongos , Microscopia Confocal , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Oncotarget ; 6(18): 16396-410, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26036628

RESUMO

Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is designed to test the efficacy of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, against oncogenic actions of leptin and systematically elucidate the underlying mechanisms. Our results show that HNK significantly inhibits leptin-induced breast-cancer cell-growth, invasion, migration and leptin-induced breast-tumor-xenograft growth. Using a phospho-kinase screening array, we discover that HNK inhibits phosphorylation and activation of key molecules of leptin-signaling-network. Specifically, HNK inhibits leptin-induced Wnt1-MTA1-ß-catenin signaling in vitro and in vivo. Finally, an integral role of miR-34a in HNK-mediated inhibition of Wnt1-MTA1-ß-catenin axis was discovered. HNK inhibits Stat3 phosphorylation, abrogates its recruitment to miR-34a promoter and this release of repressor-Stat3 results in miR-34a activation leading to Wnt1-MTA1-ß-catenin inhibition. Accordingly, HNK treatment inhibited breast tumor growth in diet-induced-obese mouse model (exhibiting high leptin levels) in a manner associated with activation of miR-34a and inhibition of MTA1-ß-catenin. These data provide first in vitro and in vivo evidence for the leptin-antagonist potential of HNK revealing a crosstalk between HNK and miR34a and Wnt1-MTA1-ß-catenin axis.


Assuntos
Compostos de Bifenilo/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Leptina/metabolismo , Lignanas/uso terapêutico , Proteínas Repressoras/antagonistas & inibidores , Proteína Wnt1/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Ciclina D1/antagonistas & inibidores , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Histona Desacetilases , Humanos , Células MCF-7 , Magnolia/metabolismo , Camundongos , Camundongos Nus , Camundongos Obesos , MicroRNAs/genética , Invasividade Neoplásica/prevenção & controle , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Extratos Vegetais , Regiões Promotoras Genéticas/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Transativadores , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cancer Res ; 74(9): 2617-29, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24732433

RESUMO

Withaferin A (WFA) is a steroidal lactone with antitumor effects manifested at multiple levels that are mechanistically obscure. Using a phospho-kinase screening array, we discovered that WFA activated phosphorylation of the S6 kinase RSK (ribosomal S6 kinase) in breast cancer cells. Pursuing this observation, we defined activation of extracellular signal-regulated kinase (ERK)-RSK and ETS-like transcription factor 1 (Elk1)-CHOP (C-EBP homologous protein) kinase pathways in upregulating transcription of the death receptor 5 (DR5). Through this route, WFA acted as an effective DR5 activator capable of potentiating the biologic effects of celecoxib, etoposide, and TRAIL. Accordingly, WFA treatment inhibited breast tumor formation in xenograft and mouse mammary tumor virus (MMTV)-neu mouse models in a manner associated with activation of the ERK/RSK axis, DR5 upregulation, and elevated nuclear accumulation of Elk1 and CHOP. Together, our results offer mechanistic insight into how WFA inhibits breast tumor growth.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Vitanolídeos/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Camundongos , Camundongos Nus , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fator de Transcrição CHOP/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Elk-1 do Domínio ets/metabolismo
17.
Mol Oncol ; 8(3): 565-80, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24508063

RESUMO

Epithelial-mesenchymal transition (EMT), a critical step in the acquisition of metastatic state, is an attractive target for therapeutic interventions directed against tumor metastasis. Honokiol (HNK) is a natural phenolic compound isolated from an extract of seed cones from Magnolia grandiflora. Recent studies from our lab show that HNK impedes breast carcinogenesis. Here, we provide molecular evidence that HNK inhibits EMT in breast cancer cells resulting in significant downregulation of mesenchymal marker proteins and concurrent upregulation of epithelial markers. Experimental EMT induced by exposure to TGFß and TNFα in spontaneously immortalized nontumorigenic human mammary epithelial cells is also completely reversed by HNK as evidenced by morphological as well as molecular changes. Investigating the downstream mediator(s) that may direct EMT inhibition by HNK, we found functional interactions between HNK, Stat3, and EMT-signaling components. In vitro and in vivo analyses show that HNK inhibits Stat3 activation in breast cancer cells and tumors. Constitutive activation of Stat3 abrogates HNK-mediated activation of epithelial markers whereas inhibition of Stat3 using small molecule inhibitor, Stattic, potentiates HNK-mediated inhibition of EMT markers, invasion and migration of breast cancer cells. Mechanistically, HNK inhibits recruitment of Stat3 on mesenchymal transcription factor Zeb1 promoter resulting in decreased Zeb1 expression and nuclear translocation. We also discover that HNK increases E-cadherin expression via Stat3-mediated release of Zeb1 from E-cadherin promoter. Collectively, this study reports that HNK effectively inhibits EMT in breast cancer cells and provide evidence for a previously unrecognized cross-talk between HNK and Stat3/Zeb1/E-cadherin axis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/tratamento farmacológico , Caderinas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas de Homeodomínio/metabolismo , Lignanas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Antineoplásicos Fitogênicos/isolamento & purificação , Compostos de Bifenilo/isolamento & purificação , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Lignanas/isolamento & purificação , Magnolia/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Homeobox 1 de Ligação a E-box em Dedo de Zinco
18.
Neoplasia ; 15(1): 23-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23358729

RESUMO

The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a "guardian angel adipocytokine" for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK) and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B), which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast carcinoma in obese patients with high leptin levels.


Assuntos
Adiponectina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Transformação Celular Neoplásica/efeitos dos fármacos , Leptina/antagonistas & inibidores , Leptina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Leptina/genética , Células MCF-7 , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia
19.
Breast Cancer Res ; 14(1): R35, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22353783

RESUMO

INTRODUCTION: Honokiol, a small-molecule polyphenol isolated from magnolia species, is widely known for its therapeutic potential as an antiinflammatory, antithrombosis, and antioxidant agent, and more recently, for its protective function in the pathogenesis of carcinogenesis. In the present study, we sought to examine the effectiveness of honokiol in inhibiting migration and invasion of breast cancer cells and to elucidate the underlying molecular mechanisms. METHODS: Clonogenicity and three-dimensional colony-formation assays were used to examine breast cancer cell growth with honokiol treatment. The effect of honokiol on invasion and migration of breast cancer cells was evaluated by using Matrigel invasion, scratch-migration, spheroid-migration, and electric cell-substrate impedance sensing (ECIS)-based migration assays. Western blot and immunofluorescence analysis were used to examine activation of the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) axis. Isogenic LKB1-knockdown breast cancer cell line pairs were developed. Functional importance of AMPK activation and LKB1 overexpression in the biologic effects of honokiol was examined by using AMPK-null and AMPK-wild type (WT) immortalized mouse embryonic fibroblasts (MEFs) and isogenic LKB1-knockdown cell line pairs. Finally, mouse xenografts, immunohistochemical and Western blot analysis of tumors were used. RESULTS: Analysis of the underlying molecular mechanisms revealed that honokiol treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity, as evidenced by increased phosphorylation of the downstream target of AMPK, acetyl-coenzyme A carboxylase (ACC) and inhibition of phosphorylation of p70S6kinase (pS6K) and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1). By using AMPK-null and AMPK-WT (MEFs), we found that AMPK is required for honokiol-mediated modulation of pACC-pS6K. Intriguingly, we discovered that honokiol treatment increased the expression and cytoplasmic translocation of tumor-suppressor LKB1 in breast cancer cells. LKB1 knockdown inhibited honokiol-mediated activation of AMPK and, more important, inhibition of migration and invasion of breast cancer cells. Furthermore, honokiol treatment resulted in inhibition of breast tumorigenesis in vivo. Analysis of tumors showed significant increases in the levels of cytoplasmic LKB1 and phospho-AMPK in honokiol-treated tumors. CONCLUSIONS: Taken together, these data provide the first in vitro and in vivo evidence of the integral role of the LKB1-AMPK axis in honokiol-mediated inhibition of the invasion and migration of breast cancer cells. In conclusion, honokiol treatment could potentially be a rational therapeutic strategy for breast carcinoma.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/tratamento farmacológico , Lignanas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Lignanas/uso terapêutico , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosfoproteínas/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Carcinogenesis ; 33(4): 918-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345290

RESUMO

Understanding the molecular pathways that contribute to the development of tamoxifen resistance is a critical research priority as acquired tamoxifen resistance is the principal cause of poor prognosis and death of patients with originally good prognosis hormone-responsive breast tumors. In this report, we provide evidence that Med1, an important subunit of mediator coactivator complex, is spontaneously upregulated during acquired tamoxifen-resistance development potentiating agonist activities of tamoxifen. Phosphorylated Med1 and estrogen receptor (ER) are abundant in tamoxifen-resistant breast cancer cells due to persistent activation of extracellular signal-regulated kinases. Mechanistically, phosphorylated Med1 exhibits nuclear accumulation, increased interaction with ER and higher tamoxifen-induced recruitment to ER-responsive promoters, which is abrogated by inhibition of Med1 phosphorylation. Stable knockdown of Med1 in tamoxifen-resistant cells not only reverses tamoxifen resistance in vitro but also in vivo. Finally, higher expression levels of Med1 in the tumor significantly correlated with tamoxifen resistance in ER-positive breast cancer patients on adjuvant tamoxifen monotherapy. In silico analysis of breast cancer, utilizing published profiling studies showed that Med1 is overexpressed in aggressive subsets. These findings provide what we believe is the first evidence for a critical role for Med1 in tamoxifen resistance and identify this coactivator protein as an essential effector of the tamoxifen-induced breast cancer growth.


Assuntos
Antineoplásicos Hormonais/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Subunidade 1 do Complexo Mediador/fisiologia , Tamoxifeno/farmacologia , Western Blotting , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunoprecipitação , Subunidade 1 do Complexo Mediador/metabolismo , Microscopia de Fluorescência , Fosforilação , Receptores de Estrogênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA