Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Nutrients ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37960320

RESUMO

Previously, we showed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) ligand and a potent and persistent toxicant and carcinogenic agent, induces high levels of murine myeloid-derived suppressor cell (MDSC) when injected into mice. In the current study, we demonstrate that Resveratrol (3,4,5-trihydroxy-trans-stilbene; RSV), an AhR antagonist, reduces TCDD-mediated MDSC induction. RSV decreased the number of MDSCs induced by TCDD in mice but also mitigated the immunosuppressive function of TCDD-induced MDSCs. TCDD caused a decrease in F4/80+ macrophages and an increase in CD11C+ dendritic cells, while RSV reversed these effects. TCDD caused upregulation in CXCR2, a critical molecule involved in TCDD-mediated induction of MDSCs, and Arginase-1 (ARG-1), involved in the immunosuppressive functions of MDSCs, while RSV reversed this effect. Transcriptome analysis of Gr1+ MDSCs showed an increased gene expression profile involved in the metabolic pathways in mice exposed to TCDD while RSV-treated mice showed a decrease in such pathways. The bio-energetic profile of these cells showed that RSV treatment decreased the energetic demands induced by TCDD. Overall, the data demonstrated that RSV decreased TCDD-induced MDSC induction and function by altering the dynamics of various myeloid cell populations involving their numbers, phenotype, and immunosuppressive potency. Because MDSCs play a critical role in tumor growth and metastasis, our studies also support the potential use of RSV to attenuate the immunosuppressive properties of MDSC.


Assuntos
Células Supressoras Mieloides , Dibenzodioxinas Policloradas , Camundongos , Animais , Dibenzodioxinas Policloradas/toxicidade , Resveratrol/farmacologia , Células Supressoras Mieloides/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Células Mieloides/metabolismo , Fenótipo
2.
ACS Chem Biol ; 18(3): 508-517, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36926816

RESUMO

Class III lanthipeptides are an emerging subclass of lanthipeptides, representing an underexplored trove of new natural products with potentially broad chemical diversity and important biological activity. Bioinformatic analysis of class III lanthipeptide biosynthetic gene cluster (BGC) distribution has revealed their high abundance in the phylum Firmicutes. Many of these clusters also feature methyltransferase (MT) genes, which likely encode uncommon class III lanthipeptides. However, two hurdles, silent BGCs and low-yielding pathways, have hindered the discovery of class III lanthipeptides from Firmicutes. Here, we report the design and construction of a biosynthetic pathway refactoring and heterologous overexpression strategy which seeks to overcome these hurdles, simultaneously activating and increasing the production of these Firmicutes class III lanthipeptides. Applying our strategy to MT-containing BGCs, we report the discovery of new class III lanthipeptides from Firmicutes bearing rare N,N-dimethylations. We reveal the importance of the first two amino acids in the N-terminus of the core peptide in controlling the MT dimethylation activity. Leveraging this feature, we engineer class III lanthipeptides to enable N,N-dimethylation, resulting in significantly increased antibacterial activity. Furthermore, the refactoring and heterologous overexpression strategy showcased in this study is potentially applicable to other ribosomally synthesized and post-translationally modified peptide BGCs from Firmicutes, unlocking the genetic potential of Firmicutes for producing peptide natural products.


Assuntos
Bacteriocinas , Produtos Biológicos , Bacteriocinas/genética , Bacteriocinas/química , Firmicutes/genética , Firmicutes/metabolismo , Peptídeos/química , Família Multigênica
3.
PNAS Nexus ; 2(1): pgac290, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712935

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, is an environmental contaminant that is known for mediating toxicity across generations. However, whether TCDD can induce multigenerational changes in the expression of microRNAs (miRs) has not been previously studied. In the current study, we investigated the effect of administration of TCDD in pregnant mice (F0) on gestational day 14, on the expression of miRs in the thymus of F0 and subsequent generations (F1 and F2). Of the 3200 miRs screened, 160 miRs were dysregulated similarly in F0, F1, and F2 generations, while 46 miRs were differentially altered in F0 to F2 generations. Pathway analysis revealed that the changes in miR signature profile mediated by TCDD affected the genes that regulate cell signaling, apoptosis, thymic atrophy, cancer, immunosuppression, and other physiological pathways. A significant number of miRs that showed altered expression exhibited dioxin response elements (DRE) on their promoters. Focusing on one such miR, namely miR-203 that expressed DREs and was induced across F0 to F2 by TCDD, promoter analysis showed that one of the DREs expressed by miR-203 was functional to TCDD-mediated upregulation. Also, the histone methylation status of H3K4me3 in the miR-203 promoter was significantly increased near the transcriptional start site in TCDD-treated thymocytes across F0 to F2 generations. Genome-wide chromatin immunoprecipitation sequencing study suggested that TCDD may cause alterations in histone methylation in certain genes across the three generations. Together, the current study demonstrates that gestational exposure to TCDD can alter the expression of miRs in F0 through direct activation of DREs as well as across F0, F1, and F2 generations through epigenetic pathways.

4.
Sci Rep ; 12(1): 16668, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198723

RESUMO

Epidemiological literature indicates that women are less susceptible to type II diabetes (T2D) than males. The general consensus is that estrogen is protective, whereas its deficiency in post-menopause is associated with adiposity and impaired insulin sensitivity. However, epidemiological data suggests that males are more prone to developing T2D, and at a lower BMI, compared to females during post-menopausal years; suggesting that another factor, other than estrogen, protects females. We proposed to determine if adiponectin (APN) serves as this protective factor. An initial experiment was performed in which gonadally intact male and female mice were fed either a purified low-fat diet (LFD) or high-fat diet (HFD) (40% kcals from fat) for 16 weeks. An additional group of HFD ovariectomy (OVX) mice were included to assess estrogen deficiency's impact on obesity. Body composition, adipose tissue inflammation, ectopic lipid accumulation as well as glucose metabolism and insulin resistance were assessed. In corroboration with previous data, estrogen deficiency (OVX) exacerbated HFD-induced obesity in female mice. However, despite a higher body fat percentage and a similar degree of hepatic and skeletal muscle lipid accumulation, female OVX HFD-fed mice exhibited enhanced insulin sensitivity relative to HFD-fed males. Therefore, a subsequent HFD experiment was performed utilizing male and female (both gonadally intact and OVX) APN deficient mice (APN-/-) and wildtype littermates to determine if APN is the factor which protects OVX females from the similar degree of metabolic dysfunction as males in the setting of obesity. Indirect calorimetry was used to determine observed phenotype differences. APN deficiency limited adiposity and mitigated HFD-induced insulin resistance and adipose tissue inflammation in gonadally intact male and female, but not in OVX mice. Using indirect calorimetry, we uncovered that slight, but non-statistically significant differences in food intake and energy expenditure leading to a net difference in energy balance likely explain the reduced body weight exhibited by male APN-deficient mice. In conclusion, congenital APN deficiency is protective against obesity development in gonadally intact mice, however, in the setting of estrogen deficiency (OVX) this is not true. These findings suggest that gonadal status dictates the protective effects of congenital APN deficiency in the setting of HFD-induced obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adiponectina/deficiência , Animais , Dieta Hiperlipídica/efeitos adversos , Estrogênios/metabolismo , Feminino , Glucose/metabolismo , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Lipídeos , Masculino , Erros Inatos do Metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Ovariectomia
5.
iScience ; 25(9): 104994, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36093055

RESUMO

While blockade of cannabinoid receptor 1 (CB1) has been shown to attenuate diet-induced obesity (DIO), its relative role in different cell types has not been tested. The current study investigated the role of CB1 in immune vs non-immune cells during DIO by generating radiation-induced bone marrow chimeric mice that expressed functional CB1 in all cells except the immune cells or expressed CB1 only in immune cells. CB1-/- recipient hosts were resistant to DIO, indicating that CB1 in non-immune cells is necessary for induction of DIO. Interestingly, chimeras with CB1-/- in immune cells showed exacerbation in DIO combined with infiltration of bone-marrow-derived macrophages to the brain and visceral adipose tissue, elevated food intake, and increased glucose intolerance. These results demonstrate the opposing role of CB1 in hematopoietic versus non-hematopoietic cells during DIO and suggests that targeting immune CB1 receptors provides a new pathway to ameliorate obesity and related metabolic disorders.

6.
Aging Cell ; 21(10): e13701, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040389

RESUMO

Aging is associated with increased monocyte production and altered monocyte function. Classical monocytes are heterogenous and a shift in their subset composition may underlie some of their apparent functional changes during aging. We have previously shown that mouse granulocyte-monocyte progenitors (GMPs) produce "neutrophil-like" monocytes (NeuMo), whereas monocyte-dendritic cell progenitors (MDPs) produce monocyte-derived dendritic cell (moDC)-producing monocytes (DCMo). Here, we demonstrate that classical monocytes from the bone marrow of old male and female mice have higher expression of DCMo signature genes (H2-Aa, H2-Ab1, H2-Eb1, Cd74), and that more classical monocytes express MHCII and CD74 protein. Moreover, we show that bone marrow MDPs and classical monocytes from old mice yield more moDC. We also demonstrate higher expression of Aw112010 in old monocytes and that Aw112010 lncRNA activity regulates MHCII induction in macrophages, which suggests that elevated Aw112010 levels may underlie increased MHCII expression during monocyte aging. Finally, we show that classical monocyte expression of MHCII is also elevated during healthy aging in humans. Thus, aging-associated changes in monocyte production may underlie altered monocyte function and have implications for aging-associated disorders.


Assuntos
Monócitos , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Diferenciação Celular , Células Dendríticas , Macrófagos , Monócitos/metabolismo , RNA Longo não Codificante/metabolismo , Antígenos de Histocompatibilidade Classe II
7.
Transl Psychiatry ; 12(1): 200, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551428

RESUMO

Post-traumatic stress disorder (PTSD), which frequently occurs in the aftermath of a psychologically traumatic event is characterized by heightened inflammation. People with PTSD also suffer from a number of comorbid clinical and behavioral disorders that are related to chronic inflammation. Thus, understanding the mechanisms of enhanced inflammation in PTSD can provide insights into the relationship between PTSD and associated comorbid disorders. In the current study, we investigated the role of large intervening non-coding RNAs (lincRNAs) in the regulation of inflammation in people diagnosed with PTSD. We observed that WNT ligand, WNT10B, was upregulated in the peripheral blood mononuclear cells (PBMCs) of PTSD patients. This observation was associated with higher H3K4me3 signals around WNT10B promotor in PTSD patients compared to those without PTSD. Increased H3K4me3 resulted from LINC00926, which we found to be upregulated in the PTSD sample, bringing in histone methyltransferase, MLL1, onto WNT10B promotor leading to the introduction of H3K4 trimethylation. The addition of recombinant human WNT10B to pre-activated peripheral blood mononuclear cells (PBMCs) led to increased expression of inflammatory genes such as IFNG and IL17A, suggesting that WNT10B is involved in their upregulation. Together, our data suggested that LINC00926 interacts physically with MLL1 and thereby controls the expression of IFNG and IL17A. This is the first time a long non-coding RNA is shown to regulate the expression of WNT10B and consequently inflammation. This observation has high relevance to our understanding of disease mechanisms of PTSD and comorbidities associated with PTSD.


Assuntos
RNA Longo não Codificante , Transtornos de Estresse Pós-Traumáticos , Expressão Gênica , Humanos , Inflamação/genética , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos/metabolismo , Proteínas Wnt/genética
8.
ACS Chem Biol ; 17(5): 1197-1206, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35476918

RESUMO

Sulfonolipids (SoLs) are a unique class of sphingolipids featuring a sulfonate group compared to other sphingolipids. However, the biological functions and biosynthesis of SoLs in human microbiota have been poorly understood. Here, we report the discovery and isolation of SoLs from a human opportunistic pathogen Chryseobacterium gleum DSM16776. We show for the first time the pro-inflammatory activity of SoLs with mice primary macrophages. Furthermore, we used both in vivo heterologous expression and in vitro biochemical reconstitution to characterize two enzymes, cysteate synthase and cysteate fatty acyltransferase, that are specifically involved in the biosynthesis of SoLs rather than other sphingolipids. Based on these two SoL-specific enzymes, our bioinformatics analysis showed a wider distribution of SoL biosynthetic genes in microbes that had not been reported as SoL producers. We selected four of these strains and verified their cysteate synthase and cysteate fatty acyltransferase activities in SoL biosynthesis. Considering this wider distribution of SoL-specific biosynthetic enzymes in the context of SoLs' activity in mediating inflammation, a common and fundamental biological process, it may suggest a more comprehensive function of SoLs at play.


Assuntos
Ácido Cisteico , Esfingolipídeos , Aciltransferases , Animais , Chryseobacterium , Ácido Cisteico/metabolismo , Lipídeos , Camundongos
9.
Front Immunol ; 13: 805770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265071

RESUMO

Asthma is a chronic respiratory disease highly prevalent worldwide. Recent studies have suggested a role for microbiome-associated gut-lung axis in asthma development. In the current study, we investigated if Resveratrol (RES), a plant-based polyphenol, can attenuate ovalbumin (OVA)-induced murine allergic asthma, and if so, the role of microbiome in the gut-lung axis in this process. We found that RES attenuated allergic asthma with significant improvements in pulmonary functions in OVA-exposed mice when tested using plethysmography for frequency (F), mean volume (MV), specific airway resistance (sRaw), and delay time(dT). RES treatment also suppressed inflammatory cytokines in the lungs. RES modulated lung microbiota and caused an abundance of Akkermansia muciniphila accompanied by a reduction of LPS biosynthesis in OVA-treated mice. Furthermore, RES also altered gut microbiota and induced enrichment of Bacteroides acidifaciens significantly in the colon accompanied by an increase in butyric acid concentration in the colonic contents from OVA-treated mice. Additionally, RES caused significant increases in tight junction proteins and decreased mucin (Muc5ac) in the pulmonary epithelium of OVA-treated mice. Our results demonstrated that RES may attenuate asthma by inducing beneficial microbiota in the gut-lung axis and through the promotion of normal barrier functions of the lung.


Assuntos
Asma , Microbiota , Animais , Asma/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Pulmão/metabolismo , Camundongos , Ovalbumina/efeitos adversos , Resveratrol/farmacologia
10.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G383-G395, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35018819

RESUMO

Emodin, a natural anthraquinone, has been shown to have antitumorigenic properties and may be an effective therapy for colorectal cancer (CRC). However, its clinical development has been hampered by a poor understanding of its mechanism of action. The purpose of this study was to 1) evaluate the efficacy of emodin in mouse models of intestinal/colorectal cancer and 2) to examine the impact of emodin on macrophage behavior in the context of CRC. We used a genetic model of intestinal cancer (ApcMin/+) and a chemically induced model of CRC [azoxymethane/dextran sodium sulfate (AOM/DSS)]. Emodin was administered orally (40 or 80 mg/kg in AOM/DSS and 80 mg/kg in ApcMin/+) three times a week to observe its preventative effects. Emodin reduced polyp count and size in both rodent models (P < 0.05). We further analyzed the colon microenvironment of AOM/DSS mice and found that mice treated with emodin exhibited lower protumorigenic M2-like macrophages and a reduced ratio of M2/M1 macrophages within the colon (P < 0.05). Despite this, we did not detect any significant changes in M2-associated cytokines (IL10, IL4, and Tgfb1) nor M1-associated cytokines (IL6, TNFα, IL1ß, and IFNγ) within excised polyps. However, there was a significant increase in NOS2 expression (M1 marker) in mice treated with 80 mg/kg emodin (P < 0.05). To confirm emodin's effects on macrophages, we exposed bone marrow-derived macrophages (BMDMs) to C26 colon cancer cell conditioned media. Supporting our in vivo data, emodin reduced M2-like macrophages. Overall, these data support the development of emodin as a natural compound for prevention of CRC given its ability to target protumor macrophages.NEW & NOTEWORTHY Our study confirms that emodin is an effective primary therapy against the onset of genetic and chemically induced sporadic colorectal cancer. We established that emodin reduces the M2-like protumorigenic macrophages in the tumor microenvironment. Furthermore, we provide evidence that emodin may be acting to antagonize the P2X7 receptor within the bone tissue and consequently decrease the activation of proinflammatory cells, which may have implications for recruitment of cells to the tumor microenvironment.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Emodina , Animais , Azoximetano , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Emodina/metabolismo , Emodina/farmacologia , Emodina/uso terapêutico , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Carga Tumoral , Microambiente Tumoral
11.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769237

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polyhalogenated planar hydrocarbon belonging to a group of highly toxic and persistent environmental contaminants known as "dioxins". TCDD is an animal teratogen and carcinogen that is well characterized for causing immunosuppression through activation of aryl hydrocarbon receptor (AHR). In this study, we investigated the effect of exposure of mice to an acute dose of TCDD on the metabolic profile within the serum and cecal contents to better define the effects of TCDD on host physiology. Our findings demonstrated that within the circulating metabolome following acute TCDD exposure, there was significant dysregulation in the metabolism of bioactive lipids, amino acids, and carbohydrates when compared with the vehicle (VEH)-treated mice. These widespread changes in metabolite abundance were identified to regulate host immunity via modulating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated protein kinase (ERK1/2) activity and work as biomarkers for a variety of organ injuries and dysfunctions that follow TCDD exposure. Within the cecal content of mice exposed to TCDD, we were able to detect changes in inflammatory markers that regulate NF-κB, markers of injury-related inflammation, and changes in lysine degradation, nicotinamide metabolism, and butanoate metabolism, which collectively suggested an immediate suppression of broad-scale metabolic processes in the gastrointestinal tract. Collectively, these results demonstrate that acute TCDD exposure results in immediate irregularities in the circulating and intestinal metabolome, which likely contribute to TCDD toxicity and can be used as biomarkers for the early detection of individual exposure.


Assuntos
Ceco/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Animais , Feminino , Camundongos
12.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298921

RESUMO

Chronic inflammation is considered to be a silent killer because it is the underlying cause of a wide range of clinical disorders, from cardiovascular to neurological diseases, and from cancer to obesity. In addition, there are over 80 different types of debilitating autoimmune diseases for which there are no cure. Currently, the drugs that are available to suppress chronic inflammation are either ineffective or overtly suppress the inflammation, thereby causing increased susceptibility to infections and cancer. Thus, the development of a new class of drugs that can suppress chronic inflammation is imperative. Cannabinoids are a group of compounds produced in the body (endocannabinoids) or found in cannabis (phytocannabinoids) that act through cannabinoid receptors and various other receptors expressed widely in the brain and immune system. In the last decade, cannabinoids have been well established experimentally to mediate anti-inflammatory properties. Research has shown that they suppress inflammation through multiple pathways, including apoptosis and inducing immunosuppressive T regulatory cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Interestingly, cannabinoids also mediate epigenetic alterations in genes that regulate inflammation. In the current review, we highlight how the epigenetic modulations caused by cannabinoids lead to the suppression of inflammation and help identify novel pathways that can be used to target autoimmune diseases.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/genética , Canabinoides/farmacologia , Epigênese Genética/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Animais , Humanos , Sistema Imunitário/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos
13.
J Psychiatr Res ; 138: 207-218, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865170

RESUMO

Post-traumatic stress disorder (PTSD) is one of the prevalent neurological disorder which is drawing increased attention over the past few decades. Major risk factors for PTSD can be categorized into environmental and genetic factors. Among the genetic risk factors, polymorphisms in the catechol-O-methyltransferase (COMT) gene is known to be associated with the risk for PTSD. In the present study, we analysed the impact of deleterious single nucleotide polymorphisms (SNPs) in the COMT gene conferring risk to PTSD using computational based approaches followed by molecular dynamic simulations. The data on COMT gene associated with PTSD were collected from several databases including Online Mendelian Inheritance in Man (OMIM) search. Datasets related to SNP were downloaded from the dbSNP database. To study the structural and dynamic effects of COMT wild type and mutant forms, we performed molecular dynamics simulations (MD simulations) at a time scale of 300 ns. Results from screening the SNPs using the computational tools SIFT and Polyphen-2 demonstrated that the SNP rs4680 (V158M) in COMT has a deleterious effect with phenotype in PTSD. Results from the MD simulations showed that there is some major fluctuations in the structural features including root mean square deviation (RMSD), radius of gyration (Rg), root mean square fluctuation (RMSF) and secondary structural elements including α-helices, sheets and turns between wild-type (WT) and mutant forms of COMT protein. In conclusion, our study provides novel insights into the deleterious effects and impact of V158M mutation on COMT protein structure which plays a key role in PTSD.


Assuntos
Catecol O-Metiltransferase , Transtornos de Estresse Pós-Traumáticos , Alelos , Catecol O-Metiltransferase/genética , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Transtornos de Estresse Pós-Traumáticos/genética
14.
J Nat Prod ; 84(5): 1638-1648, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33899471

RESUMO

While marine natural products have been investigated for anticancer drug discovery, they are barely screened against rare cancers. Thus, in our effort to discover potential drug leads against the rare cancer pseudomyxoma peritonei (PMP), which currently lacks effective drug treatments, we screened extracts of marine actinomycete bacteria against the PMP cell line ABX023-1. This effort led to the isolation of nine rearranged angucyclines from Streptomyces sp. CNZ-748, including five new analogues, namely, grincamycins P-T (1-5). The chemical structures of these compounds were unambiguously established based on spectroscopic and chemical analyses. Particularly, grincamycin R (3) possesses an S-containing α-l-methylthio-aculose residue, which was discovered in nature for the first time. All of the isolated compounds were evaluated against four PMP cell lines and some exhibited low micromolar inhibitory activities. To identify a candidate biosynthetic gene cluster (BGC) encoding the grincamycins, we sequenced the genome of the producing strain, Streptomyces sp. CNZ-748, and compared the BGCs detected with those linked to the production of angucyclines with different aglycon structures.


Assuntos
Antraquinonas/farmacologia , Antineoplásicos/farmacologia , Pseudomixoma Peritoneal/tratamento farmacológico , Streptomyces/química , Antraquinonas/isolamento & purificação , Antineoplásicos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , California , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sedimentos Geológicos/microbiologia , Humanos , Estrutura Molecular , Família Multigênica , Streptomyces/genética
15.
Sci Rep ; 11(1): 4272, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608608

RESUMO

Mauritius Island possesses unique plant biodiversity with a potential reservoir of biologically active compounds of pharmacological interest. In the current study, we investigated Mauritius endemic plant families Asteraceae, Ebenaceae, Sapotaceae, and Erythroxylaceae, for anti-cancer properties on T cell lymphoma and B16F10 Melanoma cells and immunomodulatory properties on primary T and B cells. The cytotoxicity of methanolic plant extracts at 1, 10, 25 µg/ml was determined. The most active plant species were evaluated for their apoptosis-inducing effects. The immunomodulatory properties of the plants were also studied, and preliminary phytochemical screening of selected plants was done by LC-MS analysis. Psiadia lithospermifolia (Lam.) Cordem (Asteraceae) at 25 µg/ml was the most cytotoxic on both EL4 and B16 cells and triggered apoptosis by the death receptor pathway, and at least in part, by the mitochondrial pathway. Most plant species from Asteraceae, Ebenaceae, Erythroxylaceae, and Sapotaceae inhibited the proliferation of activated T and B cells, although some promoted T cell proliferation. LC-MS profile of Asteraceae plants showed the presence of terpenes, terpenoids, fatty acids, and phenolic. Flavonoids and phenolic acid were also detected from Ebenaceae and Sapotaceae plants. Together, our study demonstrated that Mauritius endemic flora exhibit potential anti-cancer and anti-inflammatory properties worthy of further in-depth studies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Fatores Imunológicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Feminino , Fatores Imunológicos/química , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Maurício , Melanoma Experimental , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Extratos Vegetais/química , Folhas de Planta/química , Transdução de Sinais
16.
BMC Pharmacol Toxicol ; 22(1): 9, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509280

RESUMO

BACKGROUND: Emodin, a natural anthraquinone, has shown potential as an effective therapeutic agent in the treatment of many diseases including cancer. However, its clinical development is hindered by uncertainties surrounding its potential toxicity. The primary purpose of this study was to uncover any potential toxic properties of emodin in mice at doses that have been shown to have efficacy in our cancer studies. In addition, we sought to assess the time course of emodin clearance when administered both intraperitoneally (I.P.) and orally (P.O.) in order to begin to establish effective dosing intervals. METHODS: We performed a subchronic (12 week) toxicity study using 3 different doses of emodin (~ 20 mg/kg, 40 mg/kg, and 80 mg/kg) infused into the AIN-76A diet of male and female C57BL/6 mice (n = 5/group/sex). Body weight and composition were assessed following the 12-week feeding regime. Tissues were harvested and assessed for gross pathological changes and blood was collected for a complete blood count and evaluation of alanine transaminase (ALT), aspartate transaminase (AST) and creatinine. For the pharmacokinetic study, emodin was delivered intraperitoneally I.P. or P.O. at 20 mg/kg or 40 mg/kg doses to male and female mice (n = 4/group/sex/time-point) and circulating levels of emodin were determined at 1, 4 and 12 h following administration via liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. RESULTS: We found that 12 weeks of low (20 mg/kg), medium (40 mg/kg), or high (80 mg/kg) emodin feeding did not cause pathophysiological perturbations in major organs. We also found that glucuronidated emodin peaks at 1 h for both I.P. and P.O. administered emodin and is eliminated by 12 h. Interestingly, female mice appear to metabolize emodin at a faster rate than male mice as evidenced by greater levels of glucuronidated emodin at the 1 h time-point (40 mg/kg for both I.P. and P.O. and 20 mg/kg I.P.) and the 4-h time-point (20 mg/kg I.P.). CONCLUSIONS: In summary, our studies establish that 1) emodin is safe for use in both male and female mice when given at 20, 40, and 80 mg/kg doses for 12 weeks and 2) sex differences should be considered when establishing dosing intervals for emodin treatment.


Assuntos
Antineoplásicos/toxicidade , Emodina/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Colo/anatomia & histologia , Colo/efeitos dos fármacos , Emodina/sangue , Emodina/farmacocinética , Feminino , Glucuronídeos/metabolismo , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Intestino Delgado/anatomia & histologia , Intestino Delgado/efeitos dos fármacos , Rim/anatomia & histologia , Rim/efeitos dos fármacos , Fígado/anatomia & histologia , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacocinética , Caracteres Sexuais , Baço/anatomia & histologia , Baço/efeitos dos fármacos , Testes de Toxicidade Subcrônica
17.
J Crohns Colitis ; 15(6): 1032-1048, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-33331878

RESUMO

BACKGROUND AND AIMS: Cannabinoid receptor [CB] activation can attenuate inflammatory bowel disease [IBD] in experimental models and human cohorts. However, the roles of the microbiome, metabolome, and the respective contributions of haematopoietic and non-haematopoietic cells in the anti-colitic effects of cannabinoids have yet to be determined. METHODS: Female C57BL/6 mice were treated with either cannabidiol [CBD], Δ 9-tetrahydrocannabinol [THC], a combination of CBD and THC, or vehicle, in several models of chemically induced colitis. Clinical parameters of colitis were assessed by colonoscopy, histology, flow cytometry, and detection of serum biomarkers; single-cell RNA sequencing and qRT-PCR were used to evaluate the effects of cannabinoids on enterocytes. Immune cell transfer from CB2 knockout mice was used to evaluate the contribution of haematopoietic and non-haematopoietic cells to colitis protection. RESULTS: We found that THC prevented colitis and that CBD, at the dose tested, provided little benefit to the amelioration of colitis, nor when added synergistically with THC. THC increased colonic barrier integrity by stimulating mucus and tight junction and antimicrobial peptide production, and these effects were specific to the large intestine. THC increased colonic Gram-negative bacteria, but the anti-colitic effects of THC were independent of the microbiome. THC acted both on immune cells via CB2 and on enterocytes, to attenuate colitis. CONCLUSIONS: Our findings demonstrate how cannabinoid receptor activation on both immune cells and colonocytes is critical to prevent colonic inflammation. These studies also suggest how cannabinoid receptor activation can be used as a preventive and therapeutic modality against colitis.


Assuntos
Canabidiol/farmacologia , Colite , Dronabinol/farmacologia , Enterócitos , Imunidade Celular , Receptor CB2 de Canabinoide , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colite/terapia , Colonoscopia/métodos , Monitoramento de Medicamentos , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/farmacologia , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo
18.
Front Immunol ; 12: 815840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058939

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric disorder and patients diagnosed with PTSD often express other comorbid health issues, particularly autoimmune and inflammatory disorders. Our previous reports investigating peripheral blood mononuclear cells (PBMCs) from PTSD patients showed that these patients exhibit an increased inflammatory T helper (Th) cell phenotype and widespread downregulation of microRNAs (miRNAs), key molecules involved in post-transcriptional gene regulation. A combination of analyzing prior datasets on gene and miRNA expression of PBMCs from PTSD and Control samples, as well as experiments using primary PBMCs collected from human PTSD and Controls blood, was used to evaluate TP53 expression, DNA methylation, and miRNA modulation on Th17 development. In the current report, we note several downregulated miRNAs were linked to tumor protein 53 (TP53), also known as p53. Expression data from PBMCs revealed that compared to Controls, PTSD patients exhibited decreased TP53 which correlated with an increased inflammatory Th17 phenotype. Decreased expression of TP53 in the PTSD population was shown to be associated with an increase in DNA methylation in the TP53 promotor region. Lastly, the most significantly downregulated TP53-associated miRNA, let-7a, was shown to negatively regulate Th17 T cells. Let-7a modulation in activated CD4+ T cells was shown to influence Th17 development and function, via alterations in IL-6 and IL-17 production, respectively. Collectively, these studies reveal that PTSD patients could be susceptible to inflammation by epigenetic dysregulation of TP53, which alters the miRNA profile to favor a proinflammatory Th17 phenotype.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Proteína Supressora de Tumor p53/genética , Adulto , Biomarcadores , Metilação de DNA , Feminino , Humanos , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Fenótipo , Regiões Promotoras Genéticas , Interferência de RNA , Índice de Gravidade de Doença , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Proteína Supressora de Tumor p53/metabolismo
19.
J Neuroimmune Pharmacol ; 16(2): 403-424, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32607691

RESUMO

Neuroinflammation leads to tissue injury causing many of the clinical symptoms of Multiple Sclerosis, an autoimmune disorder of the central nervous system (CNS). While T cells, specifically Th1 and Th17 cells, are the ultimate effectors of this disease, dendritic cells (DCs) mediate T cell polarization, activation, etc. In our previous study, Apigenin, a natural flavonoid, has been shown to reduce EAE disease severity through amelioration of demyelination in the CNS as well as the sequestering of DCs and other myeloid cells in the periphery. Here, we show that Apigenin exerts its effects possibly through shifting DC modulated T cell responses from Th1 and Th17 type towards Treg directed responses evident through the decrease in T-bet, IFN-γ (Th1), IL-17 (Th17) and increase in IL-10, TGF-ß and FoxP3 (Treg) expression in cells from both normal human donors and EAE mice. RelB, an NF-κß pathway protein is central to DC maturation, its antigen presentation capabilities and DC-mediated T cell activation. Apigenin reduced mRNA and protein levels of RelB and also reduced its nuclear translocation. Additionally, siRNA-mediated silencing of RelB further potentiated the RelB-mediated effects of Apigenin thus confirming its role in Apigenin directed regulation of DC biology. These results provide key information about the molecular events controlled by Apigenin in its regulation of DC activity marking its potential as a therapy for neuroinflammatory disease. Graphical Abstract.


Assuntos
Apigenina/farmacologia , Células Dendríticas/efeitos dos fármacos , Inflamação/imunologia , Ativação Linfocitária/efeitos dos fármacos , Fator de Transcrição RelB/metabolismo , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Humanos , Inflamação/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Fator de Transcrição RelB/efeitos dos fármacos
20.
Oncotarget ; 11(49): 4554-4569, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33346251

RESUMO

BACKGROUND: The association between obesity and colorectal cancer (CRC) risk has been well established. This relationship appears to be more significant in men than in women, which may be attributable to sex hormones. However, controlled animal studies to substantiate these claims and the mechanisms involved are lacking. MATERIALS AND METHODS: MC38 murine colon adenocarcinoma cells were injected subcutaneously into high-fat diet (HFD) fed male, female and ovariectomized (OVX) female C57BL/6 mice. RESULTS: HFD increased tumor growth (main effect) that was consistent with metabolic perturbations (P < 0.01). HFD OVX mice exhibited the most significant tumor growth compared to HFD male and female mice (p < 0.05) and this was associated with increased subcutaneous adipose tissue (p < 0.05). Further, the subcutaneous adipose tissue depots within HFD OVX mice exhibited more severe macrophage associated inflammation compared to female (P < 0.01), but not male mice. Conditioned media from subcutaneous adipose tissue of HFD OVX contained higher IGF-1 levels compared to male (P < 0.01), but not female mice. Finally, HFD OVX mice had increased M2-like gene expression in their tumor-associated macrophages (TAMs) compared to female mice (P < 0.01). CONCLUSIONS: This work provides evidences suggesting adiposity, adipose specific IGF-1, macrophage associated adipose inflammation, and TAMs as potential mechanisms driving obesity-enhanced CRC in females lacking ovarian hormones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA