Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 18(8): 1657-1671, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295423

RESUMO

Pituitary organoids are promising graft sources for transplantation in treatment of hypopituitarism. Building on development of self-organizing culture to generate pituitary-hypothalamic organoids (PHOs) using human pluripotent stem cells (hPSCs), we established techniques to generate PHOs using feeder-free hPSCs and to purify pituitary cells. The PHOs were uniformly and reliably generated through preconditioning of undifferentiated hPSCs and modulation of Wnt and TGF-ß signaling after differentiation. Cell sorting using EpCAM, a pituitary cell-surface marker, successfully purified pituitary cells, reducing off-target cell numbers. EpCAM-expressing purified pituitary cells reaggregated to form three-dimensional pituitary spheres (3D-pituitaries). These exhibited high adrenocorticotropic hormone (ACTH) secretory capacity and responded to both positive and negative regulators. When transplanted into hypopituitary mice, the 3D-pituitaries engrafted, improved ACTH levels, and responded to in vivo stimuli. This method of generating purified pituitary tissue opens new avenues of research for pituitary regenerative medicine.


Assuntos
Hormônio Adrenocorticotrópico , Células-Tronco Pluripotentes , Camundongos , Animais , Humanos , Molécula de Adesão da Célula Epitelial , Técnicas de Cultura de Células/métodos , Diferenciação Celular
2.
PLoS One ; 17(11): e0276694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36356043

RESUMO

The hypothalamus is comprised of heterogenous cell populations and includes highly complex neural circuits that regulate the autonomic nerve system. Its dysfunction therefore results in severe endocrine disorders. Although recent experiments have been conducted for in vitro organogenesis of hypothalamic neurons from embryonic stem (ES) or induced pluripotent stem (iPS) cells, whether these stem cell-derived hypothalamic neurons can be useful for regenerative medicine remains unclear. We therefore performed orthotopic transplantation of mouse ES cell (mESC)-derived hypothalamic neurons into adult mouse brains. We generated electrophysiologically functional hypothalamic neurons from mESCs and transplanted them into the supraoptic nucleus of mice. Grafts extended their axons along hypothalamic nerve bundles in host brain, and some of them even projected into the posterior pituitary (PPit), which consists of distal axons of the magnocellular neurons located in hypothalamic supraoptic and paraventricular nuclei. The axonal projections to the PPit were not observed when the mESC-derived hypothalamic neurons were ectopically transplanted into the substantia nigra reticular part. These findings suggest that our stem cell-based orthotopic transplantation approach might contribute to the establishment of regenerative medicine for hypothalamic and pituitary disorders.


Assuntos
Hipotálamo , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Hipotálamo/fisiologia , Axônios/fisiologia , Neurônios/fisiologia , Núcleo Supraóptico , Núcleo Hipotalâmico Paraventricular
3.
Front Endocrinol (Lausanne) ; 13: 941166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903276

RESUMO

Human stem cell-derived organoid culture enables the in vitro analysis of the cellular function in three-dimensional aggregates mimicking native organs, and also provides a valuable source of specific cell types in the human body. We previously established organoid models of the hypothalamic-pituitary (HP) complex using human pluripotent stem cells. Although the models are suitable for investigating developmental and functional HP interactions, we consider that isolated pituitary cells are also useful for basic and translational research on the pituitary gland, such as stem cell biology and regenerative medicine. To develop a method for the purification of pituitary cells in HP organoids, we performed surface marker profiling of organoid cells derived from human induced pluripotent stem cells (iPSCs). Screening of 332 human cell surface markers and a subsequent immunohistochemical analysis identified epithelial cell adhesion molecule (EpCAM) as a surface marker of anterior pituitary cells, as well as their ectodermal precursors. EpCAM was not expressed on hypothalamic lineages; thus, anterior pituitary cells were successfully enriched by magnetic separation of EpCAM+ cells from iPSC-derived HP organoids. The enriched pituitary population contained functional corticotrophs and their progenitors; the former responded normally to a corticotropin-releasing hormone stimulus. Our findings would extend the applicability of organoid culture as a novel source of human anterior pituitary cells, including stem/progenitor cells and their endocrine descendants.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hormônios Adeno-Hipofisários , Células-Tronco Pluripotentes , Biomarcadores/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Organoides/metabolismo , Hipófise/metabolismo , Hormônios Adeno-Hipofisários/metabolismo
4.
Cell Rep ; 30(1): 18-24.e5, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914385

RESUMO

The pituitary is a major hormone center that secretes systemic hormones responding to hypothalamus-derived-releasing hormones. Previously, we reported the independent pituitary induction and hypothalamic differentiation of human embryonic stem cells (ESCs). Here, a functional hypothalamic-pituitary unit is generated using human induced pluripotent stem (iPS) cells in vitro. The adrenocorticotropic hormone (ACTH) secretion capacity of the induced pituitary reached a comparable level to that of adult mouse pituitary because of the simultaneous maturation with hypothalamic neurons within the same aggregates. Corticotropin-releasing hormone (CRH) from the hypothalamic area regulates ACTH cells similarly to our hypothalamic-pituitary axis. Our induced hypothalamic-pituitary units respond to environmental hypoglycemic condition in vitro, which mimics a life-threatening situation in vivo, through the CRH-ACTH pathway, and succeed in increasing ACTH secretion. Thus, we generated powerful hybrid organoids by recapitulating hypothalamic-pituitary development, showing autonomous maturation on the basis of interactions between developing tissues.


Assuntos
Hipotálamo/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Hipófise/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Envelhecimento/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Corticotrofos/citologia , Corticotrofos/ultraestrutura , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Camundongos , Neurônios/citologia , Organoides/citologia
5.
Biochem Biophys Res Commun ; 516(4): 1060-1065, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31279527

RESUMO

Tyrosine hydroxylase (TH), which catalyzes the conversion of l-tyrosine to l-DOPA, is the rate-limiting enzyme in the biosynthesis of catecholamines. It is well known that both α-synuclein and 14-3-3 protein family members bind to the TH molecule and regulate phosphorylation of its N-terminus by kinases to control the catalytic activity. In this present study we investigated whether other proteins aside from these 2 proteins might also bind to TH molecules. Nano-LC-MS/MS analysis revealed that 5'-nucleotidase domain-containing protein 2 (NT5DC2), belonging to a family of haloacid dehalogenase-type (HAD) phosphatases, was detected in the immunoprecipitate of PC12D cell lysates that had been reacted with Dynabeads protein G-anti-TH antibody conjugate. Surprisingly, NT5DC2 had already been revealed by Genome-Wide Association Studies (GWAS) as a gene implicated in neuropsychiatric disorders such as schizophrenia, bipolar disorder, which are diseases related to the abnormality of dopamine activity in the brain, although the role that NT5DC2 plays in these diseases remains unknown. Therefore, we investigated the effect of NT5DC2 on the TH molecule. The down-regulation of NT5DC2 by siRNA increased the synthesis of catecholamines (dopamine, noradrenaline, and adrenaline) in PC12D cells. These increases might be attributed to the catalytic activity of TH and not to the intracellular stability of TH, because the intracellular content of TH assessed by Western blotting was not changed by the down-regulation of NT5DC2. Collectively, our results indicate that NT5DC2 inhibited the synthesis of dopamine by decreasing the enzymatic activity of TH.


Assuntos
5'-Nucleotidase/metabolismo , Catecolaminas/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , 5'-Nucleotidase/genética , Animais , Linhagem Celular , Cromatografia Líquida , Regulação para Baixo , Células PC12 , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Espectrometria de Massas em Tandem
6.
Biochem Biophys Res Commun ; 472(4): 598-602, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969276

RESUMO

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its stability is a fundamental factor to maintain the level of the catecholamines in cells. However, the intracellular stability determined by the degradation pathway remains unknown. In this study, we investigated the mechanism by which phosphorylation of TH affected the proteasome pathway. The inhibition of proteasomes by MG-132 increased the percentage of TH molecules phosphorylated at their Ser19, Ser31 and/or Ser40 among the total TH proteins to about 70% in PC12D cells over a 24-hr period; although the percentage of phosphorylated TH molecules was about 20% under basal conditions. Moreover, the inhibition of proteasomes by epoxomicin with high specificity increased primarily the quantity of TH molecules phosphorylated at their Ser19. The phosphorylation of Ser19 potentiated Ser40 phosphorylation in cells by a process known as hierarchical phosphorylation. Therefore, the proteasome inhibition might result in an increase in the levels of all 3 phosphorylated TH forms, thus complicating interpretation of data. Conversely, activation of proteasome degradation by IU-1, which is an inhibitor for the deubiquitinating activity of USP14, decreased only the quantity of TH molecules phosphorylated at their Ser19, although it did not decrease that of TH phosphorylated at its Ser31 and Ser40 or that of TH molecules. These results suggest that the phosphorylation of Ser19 in the N-terminal portion of TH is critical as a trigger for the degradation of this enzyme by the ubiquitin-proteasome pathway.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células PC12 , Fosforilação , Proteólise , Ratos , Transdução de Sinais , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitinação
7.
J Neural Transm (Vienna) ; 122(6): 757-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25504008

RESUMO

We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production. Therefore, our aim was to determine whether aripiprazole activates Nrf2 in PC12 cells. Aripiprazole increased mRNA expression of Nrf2-dependent genes (NAD(P)H-quinone oxidoreductase-1, Nqo1; heme oxygenase-1, HO1; and glutamate-cysteine ligase catalytic subunit) and protein expression of Nqo1 and HO1 in these cells (p < 0.05). To maintain increased Nrf2 activity, it is necessary to inhibit Nrf2 degradation; this is done by causing Nrf2 to dissociate from Keap1 or ß-TrCP. However, in aripiprazole-treated cells, the relative amount of Nrf2 anchored to Keap1 or ß-TrCP was unaffected and Nrf2 in the nuclear fraction decreased (p < 0.05). Aripiprazole did not affect phosphorylation of Nrf2 at Ser40 and decreased the relative amount of acetylated Nrf2 (p < 0.05). The increase in Nqo1 and HO1 in aripiprazole-treated cells cannot be explained by the canonical Nrf2-degrading pathways. Further experiments are needed to determine the biochemical mechanisms underlying the aripiprazole-induced increase in these enzymes.


Assuntos
Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Acetilação/efeitos dos fármacos , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Peróxido de Hidrogênio/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Células PC12 , Fosforilação/efeitos dos fármacos , Ratos , Proteínas Contendo Repetições de beta-Transducina/metabolismo
8.
J Nutr Biochem ; 25(12): 1309-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283329

RESUMO

Interaction between adipocytes and macrophages has been suggested to play a central role in the pathogenesis of obesity. Ceramide, a sphingolipid de novo synthesized from palmitate, is known to stimulate pro-inflammatory cytokine secretion from multiple types of cells. To clarify whether de novo synthesized ceramide contributes to cytokine dysregulation in adipocytes and macrophages, we observed cytokine secretion in mature 3T3-L1 adipocytes (L1) and RAW264.7 macrophages (RAW) cultured alone or co-cultured under the suppression of de novo ceramide synthesis. Palmitate enhanced ceramide accumulation and stimulated the expression and secretion of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) in L1. The suppression of serine-palmitoyl transferase, a rate-limiting enzyme of de novo ceramide synthesis, by myriocin or siRNA attenuated those palmitate-induced alterations, and a ceramide synthase inhibitor fumonisin B1 showed similar results. In contrast, the inhibitor of sphingosine kinase or a membrane-permeable ceramide analogue augmented the cytokine secretion. Myriocin effects on the palmitate-induced changes were not abrogated by toll-like receptor-4 blockade. Although palmitate stimulated RAW to secrete tumor necrosis factor-α (TNF-α), it did not significantly increase ceramide content, and neither myriocin nor fumonisin B1 attenuated the TNF-α hypersecretion. The co-culture of L1 with RAW markedly augmented IL-6 and MCP-1 levels in media. Myriocin or fumonisin B1 significantly lowered these cytokine levels and suppressed the gene expression of TNF-α and MCP-1 in RAW and of IL-6 and MCP-1 in L1. In conclusion, de novo synthesized ceramide partially mediates the palmitate effects on pro-inflammatory adipokines and is possibly involved in the interaction with macrophages.


Assuntos
Adipócitos/metabolismo , Adipocinas/metabolismo , Ceramidas/biossíntese , Macrófagos/metabolismo , Células 3T3-L1 , Animais , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Ácidos Graxos Monoinsaturados/farmacologia , Fumonisinas/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Palmitatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Obesity (Silver Spring) ; 22(2): 371-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23804363

RESUMO

OBJECTIVE: The S100 calcium binding protein B (S100B) implicated in brain inflammation acts via the receptor of advanced glycation end products (RAGE) and is also secreted from adipocytes. We investigated the role of S100B in the interaction between adipocytes and macrophages using a cell-culture model. DESIGN AND METHODS: RAW264.7 macrophages (RAW) were stimulated by recombinant S100B to observe alterations in TNF-α and M1 markers; 3T3-L1 adipocytes (L1) were stimulated by TNF-α to examine S100B secretion. RAW and L1 were then mutually stimulated with conditioned media of each other, or co-cultured. The effects of S100B silencing or a RAGE-neutralizing antibody were also investigated. RESULTS: S100B upregulated TNF-α and M1 markers in RAW, and TNF-α augmented S100B secretion from L1. L1 conditioned media stimulated TNF-α secretion from RAW, and RAW conditioned media increased S100B secretion from L1. The co-culture of RAW and L1 increased TNF-α, S100B, and the expression of M1 markers and the MCP-1 receptor CCR2. The silencing of S100B or RAGE neutralization significantly ameliorated TNF-α hypersecretion from RAW that were stimulated with L1 conditioned media. CONCLUSIONS: Thus, S100B as an adipokine may play a role in the interaction between adipocytes and macrophages to establish a vicious paracrine loop.


Assuntos
Adipócitos Brancos/metabolismo , Comunicação Celular , Macrófagos/metabolismo , Receptores Imunológicos/agonistas , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Células 3T3-L1 , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/imunologia , Adipocinas/antagonistas & inibidores , Adipocinas/genética , Adipocinas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Inativação Gênica , Imunomodulação/efeitos dos fármacos , Resistência à Insulina , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Obesidade/imunologia , Obesidade/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/agonistas
10.
J Neural Transm (Vienna) ; 121(1): 91-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23934573

RESUMO

In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis. Therefore, we assayed intracellular amounts of NADPH, ROS, and the activities of the enzymes generating or consuming NADPH (G6PD, NADP(+)-dependent isocitrate dehydrogenase, NADP(+)-dependent malic enzyme, glutathione reductase, and NADPH oxidase [NOX]) and estimated glycolysis in 50 µM aripiprazole-, clozapine-, and haloperidol-treated PC12 cells. NADPH levels were enhanced only in aripiprazole-treated ones. Only haloperidol increased ROS. However, the enzyme activities did not show significant changes toward enhancing NADPH level except for the aripiprazole-induced decrease in NOX activity. Thus, the lowered NOX activity could have contributed to the aripiprazole-induced increase in the NADPH level by lowering ROS generation, resulting in maintained Δψm. Although the aforementioned assumption was invalid, the ratio of fructose-1,6-bisphosphate to fructose-6-phosphate was decreased by all antipsychotics examined. Pyruvate kinase activity was enhanced only by aripiprazole. In summary, these observations indicate that aripiprazole possibly possesses the pharmacological superiority to clozapine and haloperidol in the ROS generation and the adjustment of glycolytic pathway.


Assuntos
Antipsicóticos/farmacologia , NADPH Oxidases/metabolismo , NADP/metabolismo , Neurônios/efeitos dos fármacos , Piperazinas/farmacologia , Quinolonas/farmacologia , Animais , Aripiprazol , Neurônios/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
Metabolism ; 62(5): 734-42, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23194643

RESUMO

OBJECTIVE: Alpha-glucosidase inhibitors (α-GIs) show various anti-diabetic or anti-obesity effects in addition to the suppression of postprandial hyperglycemia. Based on recent observations that bile acids (BAs) are involved in glucose and energy homeostasis, we examined the ability of miglitol, an α-GI, to influence BA metabolism and ameliorate insulin resistance and obesity. MATERIALS/METHODS: NSY mice, representing an obese type 2 diabetic model, were fed with a high-fat diet and treated with miglitol for 4 or 12 weeks. BAs were quantified in feces, blood from the portal vein or the vena cava and in the liver. The gene expression of type 2 iodothyronine deiodinase (D2) in brown adipose tissues, gluconeogenetic enzymes in the liver and adipokines in epididymal fat was measured, and portal blood glucagon-like peptide-1 (GLP-1) levels, body weight changes, glucose tolerance along with insulin sensitivity were evaluated. RESULTS: Miglitol significantly increased BAs in both feces and portal blood while the hepatic BA level was reduced. The drug clearly enhanced active GLP-1 secretion into the portal blood and there was a good positive correlation between the active GLP-1 levels and portal blood BA concentrations. D2 expression in brown adipose tended to increase in association with the elevated BA concentrations. Miglitol ameliorated body weight gain, glucose intolerance, insulin resistance and inflammatory adipokine upregulation that were induced by a high-fat diet. CONCLUSIONS: Collectively, miglitol substantially affects BA regulation in mice and this novel finding may explain in part the known favourable effects of the drug on diabetes and obesity.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/administração & dosagem , Resistência à Insulina , Obesidade/tratamento farmacológico , Obesidade/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/uso terapêutico , Animais , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores de Glicosídeo Hidrolases , Células Hep G2 , Humanos , Hipoglicemiantes/uso terapêutico , Resistência à Insulina/fisiologia , Masculino , Camundongos , Obesidade/sangue , Obesidade/complicações , Ratos , Ratos Wistar
12.
Neuroreport ; 23(11): 673-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22643238

RESUMO

The area postrema (AP) is a circumventricular organ that lacks a blood-brain barrier. Previous studies have shown that the lesion of AP (APX) attenuated hyperphagic responses to glucoprivation. As the orexigenic neuropeptide Y (NPY) neurons have been implicated in the regulation of food intake, we examined whether the activation of NPY neurons by glucoprivation is mediated through the AP as well. In agreement with previous studies, hyperphagic responses to an injection of 2-deoxy-D-glucose that blocks glucose utilization were significantly attenuated in the APX group compared with the sham-operated (Sham) group. However, the expression levels of NPY heteronuclear RNA, a sensitive indicator for the gene transcription, were significantly increased in the arcuate nucleus by a 2-deoxy-D-glucose injection in both the APX and the Sham groups, and there were no significant differences in the values between groups. These data suggest that the hyperphagic response to glucoprivation, but not the activation of NPY gene transcription in the arcuate nucleus, was mediated through the AP in the hindbrain.


Assuntos
Área Postrema/fisiologia , Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Hiperfagia , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Ativação Transcricional , Animais , Área Postrema/metabolismo , Desoxiglucose/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
13.
J Surg Res ; 178(1): 63-70, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22482751

RESUMO

BACKGROUND: Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source for regenerative medicine because they are easily accessible through minimally invasive methods. We investigated the efficacy of ADSC transplantation on outcome after hepatic ischemia-reperfusion and subsequent hepatectomy in rats. METHODS: ADSCs were isolated from subcutaneous adipose tissue of rats. After clamping the hepatoduodenal ligament for 15 min, the rats were subjected to a 70% partial hepatectomy. After releasing the clamp, 2 × 10(6) ADSCs per rat were injected through the penile vein. Phosphate buffered saline was injected as a control. The parameters of hepatic regeneration, such as hepatic regeneration rate, mitotic index, and anti-proliferating cell nuclear antigen levels, were examined. Furthermore, the expression of hepatic regeneration-associated proteins and genes in the regenerating liver was determined. RESULTS: The hepatic regeneration rate 2 d after hepatectomy was significantly greater in the ADSC transplanted group compared with the sham group. Mitotic index, anti-proliferating cell nuclear antigen levels, and other regeneration-associated proteins in the liver were significantly higher in the ADSC transplanted group than the sham group on 1 d after hepatectomy. A number of hepatic regeneration-associated genes also were significantly upregulated in the ADSC transplanted group. CONCLUSIONS: These results indicate that ADSC transplantation may provide beneficial effects in the process of liver regeneration after hepatic ischemia-reperfusion and subsequent hepatectomy.


Assuntos
Hepatectomia , Regeneração Hepática/fisiologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Traumatismo por Reperfusão/fisiopatologia , Gordura Subcutânea/citologia , Animais , Células Cultivadas , Fígado/citologia , Fígado/fisiologia , Fígado/cirurgia , Masculino , Mitose/fisiologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
14.
J Neural Transm (Vienna) ; 119(11): 1327-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22392058

RESUMO

Aripiprazole is the only atypical antipsychotic drug known to cause the phosphorylation of AMP-activated protein kinase (AMPK) in PC12 cells. However, the molecular mechanisms underlying this phosphorylation in aripiprazole-treated PC12 cells have not yet been clarified. Here, using PC12 cells, we show that these cells incubated for 24 h with aripiprazole at 50 µM and 25 mM glucose underwent a decrease in their NAD⁺/NADH ratio. Aripiprazole suppressed cytochrome c oxidase (COX) activity but enhanced the activities of pyruvate dehydrogenase (PDH), citrate synthase and Complex I. The changes in enzyme activities coincided well with those in NADH, NAD⁺, and NAD⁺/NADH ratio. However, the bioenergetic peril judged by the lowered COX activity might not be accompanied by excessive occurrence of apoptotic cell death in aripiprazole-treated cells, because the mitochondrial membrane potential was not decreased, but rather increased. On the other hand, when PC12 cells were incubated for 24 h with clozapine at 50 µM and 25 mM glucose, the NAD⁺/NADH ratio did not change. Also, the COX activity was decreased; and the PDH activity was enhanced. These results suggest that aripiprazole-treated PC12 cells responded to the bioenergetic peril more effectively than the clozapine-treated ones to return the ATP biosynthesis back toward its ordinary level. This finding might be related to the fact that aripiprazole alone causes phosphorylation of AMPK in PC12 cells.


Assuntos
Antipsicóticos/farmacologia , Carbono/metabolismo , Clozapina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Piperazinas/farmacologia , Quinolonas/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aripiprazol , Sobrevivência Celular/efeitos dos fármacos , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoamida Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Líquido Extracelular/efeitos dos fármacos , Glucose/farmacologia , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Ácido Láctico/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NAD/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Células PC12/efeitos dos fármacos , Células PC12/enzimologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ácido Pirúvico/metabolismo , RNA Mensageiro/metabolismo , Ratos , Fatores de Tempo
15.
FEBS Lett ; 586(4): 368-72, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22245676

RESUMO

In this study we aimed to identify the physiological roles of G protein-coupled receptor 84 (GPR84) in adipose tissue, together with medium-chain fatty acids (MCFAs), the specific ligands for GPR84. In mice, high-fat diet up-regulated GPR84 expression in fat pads. In 3T3-L1 adipocytes, co-culture with a macrophage cell line, RAW264, or TNFα remarkably enhanced GPR84 expression. In the presence of TNFα, MCFAs down-regulated adiponectin mRNA expression in 3T3-L1 adipocytes. Taken together, our results suggest that GPR84 emerges in adipocytes in response to TNFα from infiltrating macrophages and exacerbates the vicious cycle between adiposity and diabesity.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/genética , Receptores Acoplados a Proteínas G/genética , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adiponectina/genética , Animais , Linhagem Celular , Técnicas de Cocultura , Ácidos Decanoicos/farmacologia , Ácidos Graxos/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Ligantes , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
16.
Glia ; 59(3): 452-62, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21264951

RESUMO

Osmotic demyelination syndrome (ODS) is a serious demyelinating disease in the central nervous system usually caused by rapid correction of hyponatremia. In an animal model of ODS, we previously reported microglial accumulation expressing proinflammatory cytokines. Microglia and astrocytes secreting proinflammatory cytokines and neurotrophic factors are reported to be involved in the pathogenesis of demyelinative diseases. Therefore, to clarify the role of microglial and astrocytic function in ODS, we examined the time-dependent changes in distribution, morphology, proliferation, and mRNA/protein expression of proinflammatory cytokines, neurotrophic factors, and matrix metalloproteinase (MMP) in microglia and astrocytes 2 days (early phase) and 5 days (late phase) after the rapid correction of hyponatremia in ODS rats. The number of microglia time dependently increased at demyelinative lesion sites, proliferated, and expressed tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase, and MMP2, 9, and 12 at the early phase. Microglia also expressed leukemia inhibitory factor (a neurotrophic factor) and phagocytosed myelin debris at the late phase. The number of astrocytes time dependently increased around demyelinative lesions, extended processes to lesions, proliferated, and expressed nerve growth factor and glial cell line-derived neurotrophic factor at the late phase. Moreover, treatment with infliximab, a monoclonal antibody against TNF-α, significantly attenuated neurological impairments. Our results suggest that the role of microglia in ODS is time dependently shifted from detrimental to protective and that astrocytes play a protective role at the late phase. Modulation of excessive proinflammatory responses in microglia during the early phase after rapid correction may represent a therapeutic target for ODS.


Assuntos
Astrócitos/fisiologia , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/patologia , Hiponatremia/complicações , Hiponatremia/patologia , Microglia/fisiologia , Desequilíbrio Hidroeletrolítico/complicações , Animais , Astrócitos/patologia , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Hiponatremia/terapia , Masculino , Microglia/patologia , Osmose/fisiologia , Ratos , Ratos Sprague-Dawley , Síndrome , Fatores de Tempo , Desequilíbrio Hidroeletrolítico/patologia
17.
Peptides ; 32(4): 763-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21184790

RESUMO

It is well known that glucoprivation induces the release of counterregulatory hormones such as glucagon, and that the response is attenuated when the stimuli are repeated. Glucoprivation also activates orexigenic neurons and induces hyperphagic responses, although it remains unclear whether these responses are attenuated in repeated glucoprivation. In this study, we examined time course changes in feeding as well as activities of orexigenic neuropeptide Y (NPY) neurons in repeated glucoprivation in rats. Either 2-deoxy-d-glucose (2DG), which blocks glucose utilization, or isotonic saline (control) was injected subcutaneously to rats for 14 days, and food consumption for 1 and 2h after injection was monitored throughout the experiment. While 2DG injection induced robust feeding responses during the first 1h after injection, the response was gradually attenuated and the food consumption was significantly less on days 12-14 compared to that on day 1. On the other hand, food consumption during 2h after 2DG injection was not changed significantly for 14 days. The transcriptional activities of NPY neurons in the arcuate nucleus and C1/A1 region of the hindbrain, measured by intronic in situ hybridization, were significantly enhanced after repeated 2DG injection for 14 days, while the feeding responses to intracerebroventricular injection of NPY were significantly less in the 2DG-repeated group compared to the saline-repeated group. It is thus demonstrated that repeated glucoprivation delayed hyperphagic responses while activating NPY neurons in rats. Our data also suggest that decreased feeding responses to NPY might be at least partially responsible for the delayed response.


Assuntos
Glicemia/análise , Desoxiglucose/administração & dosagem , Hiperfagia/prevenção & controle , Insulina/administração & dosagem , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/metabolismo , Animais , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Neurosci Lett ; 464(1): 6-9, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19664685

RESUMO

While the hypothalamus has been implicated in the regulation of energy balance, the central mechanisms and neural circuit that coordinate the feeding response to energy deficit have not been fully clarified. To better understand the role of the hypothalamus in mediating hyperphagic responses to food deprivation or glucoprivation, we examined the feeding responses in rats in which the medial hypothalamus (MH) was isolated from the rest of the brain. The isolation of the MH was performed with a Halasz's knife cut, and experiments were performed 7 days after the operation. Food consumption between 9:00 a.m. and 11:00 a.m. in rats which had been fasted overnight was significantly increased compared to that in rats which had access to food ad libitum before the measurement in both the sham and MH-isolated groups, and the absolute values of food consumption in fasted rats were not significantly different between the groups. On the other hand, while an injection of 2-deoxy-d-glucose, which blocks glucose utilization, significantly increased food consumption for 2h after injection compared to a saline injection in the sham group, it did not increase food intake compared to saline injection in the MH-isolated groups. Thus, it is demonstrated that glucoprivation is not an effective stimulus to induce feeding in MH-isolated rats.


Assuntos
Comportamento Alimentar , Privação de Alimentos , Glucose/deficiência , Hipotálamo Médio/fisiologia , Animais , Desoxiglucose/farmacologia , Ingestão de Alimentos , Hiperfagia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
20.
BMC Plant Biol ; 8: 123, 2008 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19055717

RESUMO

BACKGROUND: The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein. In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets. RESULTS: We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By in silico analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively. In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected Nicotiana benthamiana leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved in vivo at the expected site. CONCLUSION: The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.


Assuntos
Regulação da Expressão Gênica de Plantas , Variação Genética , Genoma de Planta/genética , MicroRNAs/genética , Oryza/genética , Precursores de RNA/genética , Sequência de Bases , Sequência Conservada , Perfilação da Expressão Gênica , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA