Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(14): 8534-8551, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38801080

RESUMO

DExD-box RNA proteins DDX39A and DDX39B are highly homologous paralogs that are conserved in vertebrates. They are required for energy-driven reactions involved in RNA processing. Although we have some understanding of how their functions overlap in RNA nuclear export, our knowledge of whether or not these proteins have specific or redundant functions in RNA splicing is limited. Our previous work has shown that DDX39B is responsible for regulating the splicing of important immune transcripts IL7R and FOXP3. In this study, we aimed to investigate whether DDX39A, a highly homologous paralog of DDX39B, plays a similar role in regulating alternative RNA splicing. We find that DDX39A and DDX39B have significant redundancy in their gene targets, but there are targets that uniquely require one or the other paralog. For instance, DDX39A is incapable of complementing defective splicing of IL7R exon 6 when DDX39B is depleted. This exon and other cassette exons that specifically depend on DDX39B have U-poor/C-rich polypyrimidine tracts in the upstream intron and this variant polypyrimidine tract is required for DDX39B dependency. This study provides evidence that despite a high degree of functional redundancy, DDX39A and DDX39B are selectively required for the splicing of specific pre-mRNAs.


Assuntos
Processamento Alternativo , RNA Helicases DEAD-box , Éxons , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Humanos , Éxons/genética , Células HEK293 , Íntrons/genética
2.
RNA ; 30(7): 824-838, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38575347

RESUMO

Forkhead box P3 (FOXP3) is the master fate-determining transcription factor in regulatory T (Treg) cells and is essential for their development, function, and homeostasis. Mutations in FOXP3 cause immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, and aberrant expression of FOXP3 has been implicated in other diseases such as multiple sclerosis and cancer. We previously demonstrated that pre-mRNA splicing of FOXP3 RNAs is highly sensitive to levels of DExD-box polypeptide 39B (DDX39B), and here we investigate the mechanism of this sensitivity. FOXP3 introns have cytidine (C)-rich/uridine (U)-poor polypyrimidine (py) tracts that are responsible for their inefficient splicing and confer sensitivity to DDX39B. We show that there is a deficiency in the assembly of commitment complexes (CCs) on FOXP3 introns, which is consistent with the lower affinity of U2AF2 for C-rich/U-poor py tracts. Our data indicate an even stronger effect on the conversion of CCs to pre-spliceosomes. We propose that this is due to an altered conformation that U2AF2 adopts when it binds to C-rich/U-poor py tracts and that this conformation has a lower affinity for DDX39B. As a consequence, CCs assembled on FOXP3 introns are defective in recruiting DDX39B, and this leads to the inefficient assembly of pre-spliceosome complexes.


Assuntos
RNA Helicases DEAD-box , Fatores de Transcrição Forkhead , Íntrons , Splicing de RNA , Spliceossomos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo
3.
Int J Mol Sci ; 24(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37511171

RESUMO

Over the last decade, our understanding of spliceosome structure and function has significantly improved, refining the study of the impact of dysregulated splicing on human disease. As a result, targeted splicing therapeutics have been developed, treating various diseases including spinal muscular atrophy and Duchenne muscular dystrophy. These advancements are very promising and emphasize the critical role of proper splicing in maintaining human health. Herein, we provide an overview of the current information on the composition and assembly of early splicing complexes-commitment complex and pre-spliceosome-and their association with human disease.


Assuntos
Atrofia Muscular Espinal , Distrofia Muscular de Duchenne , Humanos , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Precursores de RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA