Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1197, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344631

RESUMO

Rhodopila globiformis is the most acidophilic of anaerobic purple phototrophs, growing optimally in culture at pH 5. Here we present a cryo-EM structure of the light-harvesting 1-reaction center (LH1-RC) complex from Rhodopila globiformis at 2.24 Å resolution. All purple bacterial cytochrome (Cyt, encoded by the gene pufC) subunit-associated RCs with known structures have their N-termini truncated. By contrast, the Rhodopila globiformis RC contains a full-length tetra-heme Cyt with its N-terminus embedded in the membrane forming an α-helix as the membrane anchor. Comparison of the N-terminal regions of the Cyt with PufX polypeptides widely distributed in Rhodobacter species reveals significant structural similarities, supporting a longstanding hypothesis that PufX is phylogenetically related to the N-terminus of the RC-bound Cyt subunit and that a common ancestor of phototrophic Proteobacteria contained a full-length tetra-heme Cyt subunit that evolved independently through partial deletions of its pufC gene. Eleven copies of a novel γ-like polypeptide were also identified in the bacteriochlorophyll a-containing Rhodopila globiformis LH1 complex; γ-polypeptides have previously been found only in the LH1 of bacteriochlorophyll b-containing species. These features are discussed in relation to their predicted functions of stabilizing the LH1 structure and regulating quinone transport under the warm acidic conditions.


Assuntos
Extremófilos , Rhodobacter sphaeroides , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Fotossíntese , Proteobactérias/genética , Peptídeos/metabolismo , Heme/metabolismo
2.
J Biol Chem ; 298(6): 101967, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460693

RESUMO

The mildly thermophilic purple phototrophic bacterium Allochromatium tepidum provides a unique model for investigating various intermediate phenotypes observed between those of thermophilic and mesophilic counterparts. The core light-harvesting (LH1) complex from A. tepidum exhibits an absorption maximum at 890 nm and mildly enhanced thermostability, both of which are Ca2+-dependent. However, it is unknown what structural determinants might contribute to these properties. Here, we present a cryo-EM structure of the reaction center-associated LH1 complex at 2.81 Å resolution, in which we identify multiple pigment-binding α- and ß-polypeptides within an LH1 ring. Of the 16 α-polypeptides, we show that six (α1) bind Ca2+ along with ß1- or ß3-polypeptides to form the Ca2+-binding sites. This structure differs from that of fully Ca2+-bound LH1 from Thermochromatium tepidum, enabling determination of the minimum structural requirements for Ca2+-binding. We also identified three amino acids (Trp44, Asp47, and Ile49) in the C-terminal region of the A. tepidum α1-polypeptide that ligate each Ca ion, forming a Ca2+-binding WxxDxI motif that is conserved in all Ca2+-bound LH1 α-polypeptides from other species with reported structures. The partial Ca2+-bound structure further explains the unusual phenotypic properties observed for this bacterium in terms of its Ca2+-requirements for thermostability, spectroscopy, and phototrophic growth, and supports the hypothesis that A. tepidum may represent a "transitional" species between mesophilic and thermophilic purple sulfur bacteria. The characteristic arrangement of multiple αß-polypeptides also suggests a mechanism of molecular recognition in the expression and/or assembly of the LH1 complex that could be regulated through interactions with reaction center subunits.


Assuntos
Chromatiaceae , Complexos de Proteínas Captadores de Luz , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Complexos de Proteínas Captadores de Luz/química , Peptídeos/química
3.
Nat Commun ; 13(1): 1904, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393413

RESUMO

Rhodobacter sphaeroides is a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms. Here we present cryo-EM structures of the native LH1-RC dimer and an LH1-RC monomer lacking protein-U (ΔU). The native dimer reveals several asymmetric features including the arrangement of its two monomeric components, the structural integrity of protein-U, the overall organization of LH1, and rigidities of the proteins and pigments. PufX plays a critical role in connecting the two monomers in a dimer, with one PufX interacting at its N-terminus with another PufX and an LH1 ß-polypeptide in the other monomer. One protein-U was only partially resolved in the dimeric structure, signaling different degrees of disorder in the two monomers. The ΔU LH1-RC monomer was half-moon-shaped and contained 11 α- and 10 ß-polypeptides, indicating a critical role for protein-U in controlling the number of αß-subunits required for dimer assembly and stabilization. These features are discussed in relation to membrane topology and an assembly model proposed for the native dimeric complex.


Assuntos
Rhodobacter sphaeroides , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Peptídeos/química , Fotossíntese , Rhodobacter sphaeroides/metabolismo
4.
Nat Commun ; 12(1): 6300, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728609

RESUMO

Rhodobacter (Rba.) sphaeroides is the most widely used model organism in bacterial photosynthesis. The light-harvesting-reaction center (LH1-RC) core complex of this purple phototroph is characterized by the co-existence of monomeric and dimeric forms, the presence of the protein PufX, and approximately two carotenoids per LH1 αß-polypeptides. Despite many efforts, structures of the Rba. sphaeroides LH1-RC have not been obtained at high resolutions. Here we report a cryo-EM structure of the monomeric LH1-RC from Rba. sphaeroides strain IL106 at 2.9 Å resolution. The LH1 complex forms a C-shaped structure composed of 14 αß-polypeptides around the RC with a large ring opening. From the cryo-EM density map, a previously unrecognized integral membrane protein, referred to as protein-U, was identified. Protein-U has a U-shaped conformation near the LH1-ring opening and was annotated as a hypothetical protein in the Rba. sphaeroides genome. Deletion of protein-U resulted in a mutant strain that expressed a much-reduced amount of the dimeric LH1-RC, indicating an important role for protein-U in dimerization of the LH1-RC complex. PufX was located opposite protein-U on the LH1-ring opening, and both its position and conformation differed from that of previous reports of dimeric LH1-RC structures obtained at low-resolution. Twenty-six molecules of the carotenoid spheroidene arranged in two distinct configurations were resolved in the Rba. sphaeroides LH1 and were positioned within the complex to block its channels. Our findings offer an exciting new view of the core photocomplex of Rba. sphaeroides and the connections between structure and function in bacterial photocomplexes in general.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos de Proteínas Captadores de Luz/química , Proteínas de Membrana/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/metabolismo , Dimerização , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica
5.
Endocr J ; 67(12): 1207-1214, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-32879160

RESUMO

Non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) and invasive encapsulated follicular variant of papillary thyroid carcinoma (EFV-PTC) are indistinguishable preoperatively. CD26 expression in follicular tumor-uncertain malignant potential (FT-UMP) is reported to be clearly higher than in that without capsular invasion. To verify the diagnostic significance of CD26 immunostaining in EFV-PTC, we examined the expression pattern of CD26 in non-invasive EFV-PTC (NIFTP) and invasive EFV-PTC. We performed immunohistochemical analysis using CD26 antibody for 37 NIFTPs and 54 EFV-PTCs (34 minimally invasive EFV-PTCs and 20 widely invasive EFV-PTCs). Most NIFTP samples showed an apical membranous pattern or a cytoplasmic diffuse pattern of expression. Invasive EFV-PTCs more frequently showed a cytoplasmic dot-like pattern, and the labeling indices of tumor cells with cytoplasmic dot-like patterns were significantly higher than those in NIFTPs. The sizes of dots seen in NIFTPs (mean: 1.12 µm) were significantly smaller than in invasive EFV-PTCs (1.33 µm), minimally invasive EFV-PTC (1.27 µm), and widely invasive EFV-PTC (1.38 µm). We, therefore, conclude that cytoplasmic diffuse and/or cytoplasmic dot-like CD26 expression, particularly the larger CD26-positive dots, could be useful markers for capsular invasion in EFV-PTC. CD26 immunostaining, using cell blocks or cytological specimens, may preoperatively distinguish between NIFTP and invasive EFV-PTC.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Câncer Papilífero da Tireoide/diagnóstico , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
6.
Photosynth Res ; 143(2): 115-128, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31620983

RESUMO

Enhancing the light-harvesting potential of antenna components in a system of solar energy conversion is an important topic in the field of artificial photosynthesis. We constructed a biohybrid light-harvesting complex 2 (LH2) engineered from Rhodobacter sphaeroides IL106 strain. An artificial fluorophore Alexa Fluor 647 maleimide (A647) was attached to the LH2 bearing cysteine residue at the N-terminal region (LH2-NC) near B800 bacteriochlorophyll a (BChl) assembly. The A647-attached LH2-NC conjugate (LH2-NC-A647) preserved the integrity of the intrinsic chromophores, B800- and B850-BChls, and carotenoids. Femtosecond transient absorption spectroscopy revealed that the sequential energy transfer A647 → B800 → B850 occurs at time scale of 9-10 ps with monoexponential dynamics in micellar and lipid bilayer systems. A B800-removed conjugate (LH2-NC[B800(-)]-A647) exhibited a significant decrease in energy transfer efficiency in the micellar system; however, surprisingly, direct energy transfer from A647 to B850 was observed at a rate comparable to that for LH2-NC-A647. This result implies that the energy transfer pathway is modified after B800 removal. The results obtained suggested that a LH2 complex is a potential platform for construction of biohybrid light-harvesting materials with simple energy transfer dynamics through the site-selective attachment of the external antennae and the modifiable energy-funnelling pathway.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Complexos de Proteínas Captadores de Luz/química , Bicamadas Lipídicas/química , Micelas , Soluções , Espectrometria de Fluorescência , Fatores de Tempo
7.
Proc Natl Acad Sci U S A ; 114(41): 10906-10911, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28935692

RESUMO

The native core light-harvesting complex (LH1) from the thermophilic purple phototrophic bacterium Thermochromatium tepidum requires Ca2+ for its thermal stability and characteristic absorption maximum at 915 nm. To explore the role of specific amino acid residues of the LH1 polypeptides in Ca-binding behavior, we constructed a genetic system for heterologously expressing the Tch. tepidum LH1 complex in an engineered Rhodobacter sphaeroides mutant strain. This system contained a chimeric pufBALM gene cluster (pufBA from Tch. tepidum and pufLM from Rba. sphaeroides) and was subsequently deployed for introducing site-directed mutations on the LH1 polypeptides. All mutant strains were capable of phototrophic (anoxic/light) growth. The heterologously expressed Tch. tepidum wild-type LH1 complex was isolated in a reaction center (RC)-associated form and displayed the characteristic absorption properties of this thermophilic phototroph. Spheroidene (the major carotenoid in Rba. sphaeroides) was incorporated into the Tch. tepidum LH1 complex in place of its native spirilloxanthins with one carotenoid molecule present per αß-subunit. The hybrid LH1-RC complexes expressed in Rba. sphaeroides were characterized using absorption, fluorescence excitation, and resonance Raman spectroscopy. Site-specific mutagenesis combined with spectroscopic measurements revealed that α-D49, ß-L46, and a deletion at position 43 of the α-polypeptide play critical roles in Ca binding in the Tch. tepidum LH1 complex; in contrast, α-N50 does not participate in Ca2+ coordination. These findings build on recent structural data obtained from a high-resolution crystallographic structure of the membrane integrated Tch. tepidum LH1-RC complex and have unambiguously identified the location of Ca2+ within this key antenna complex.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Chromatiaceae/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Carotenoides/metabolismo , Chromatiaceae/genética , Chromatiaceae/crescimento & desenvolvimento , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Modelos Moleculares , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Ligação Proteica , Conformação Proteica , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/crescimento & desenvolvimento , Relação Estrutura-Atividade
8.
Plant Physiol ; 138(3): 1653-64, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15965025

RESUMO

alpha-L-Arabinofuranosidase (alpha-L-arafase) was purified from fruit of Japanese pear (Pyrus pyrifolia). The enzyme solubilized from the cell wall by NaCl and Triton X-100 had the homogeneity of a single 62-kD polypeptide on SDS-PAGE after purification through the steps of hydroxyapatite, anion-exchange chromatography, and size-exclusion chromatography. A related cDNA clone was isolated (PpARF2). The transcript and related protein were detected solely in the ripening fruit corresponding to the increase of alpha-L-arafase activity. Transcripts of PpARF2 were not detected in buds, leaves, roots, or shoots of the Japanese pear. The deduced amino acid sequences of PpARF2 had low identity with those of other plants or bacteria. This alpha-L-arafase belonged to glycoside hydrolase family 3, which includes some beta-xylosidases. The purified enzyme hydrolyzed mainly p-nitrophenyl alpha-L-arabinofuranoside and also reacted bifunctionally with p-nitrophenyl beta-d-xylopyranoside. However, it released only arabinose from native cell wall polysaccharides prepared from Japanese pear and from sugar beet arabinan. The enzyme did not release xylose from arabinoxylan and xylan. The only activity of the alpha-L-arafase presented here was hydrolyzing the arabinosyl residue from native polysaccharides, whereas it showed bifunctional activity against artificial substrates. According to the expression pattern and properties of the enzyme, it is a new member of the glycoside hydrolase family 3 isolated from fruit, and it may be responsible for modification of the cell wall architecture during fruit softening.


Assuntos
Glicosídeo Hidrolases/metabolismo , Pyrus/enzimologia , Sequência de Aminoácidos , Parede Celular/enzimologia , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Japão , Dados de Sequência Molecular , Oligossacarídeos/metabolismo , Filogenia , Especificidade por Substrato
9.
J Biol Chem ; 279(31): 32545-53, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15155756

RESUMO

The photosynthetic cyclic electron transfer of the purple bacterium Rubrivivax gelatinosus, involving the cytochrome bc(1) complex and the reaction center, can be carried out via two pathways. A high potential iron-sulfur protein (HiPIP) acts as the in vivo periplasmic electron donor to the reaction center (RC)-bound cytochrome when cells are grown under anaerobic conditions in the light, while cytochrome c is the soluble electron carrier for cells grown under (8)aerobic conditions in the dark. A spontaneous reversion of R. gelatinosus C244, a defective mutant in synthesis of the RC-bound cytochrome by insertion of a Km(r) cassette leading to gene disruption with a slow growth rate, restores the normal photosynthetic growth. This revertant, designated C244-P1, lost the Km(r) cassette but synthesized a RC-bound cytochrome with an external 77-amino acid insertion derived from the cassette. We characterized the RC-bound cytochrome of this mutant by EPR, time-resolved optical spectroscopy, and structural analysis. We also investigated the in vivo electron transfer rates between the two soluble electron donors and this RC-bound cytochrome. Our results demonstrated that the C244-P1 RC-bound cytochrome is still able to receive electrons from HiPIP, but it is no longer reducible by cytochrome c(8). Combining these experimental and theoretical protein-protein docking results, we conclude that cytochrome c(8) and HiPIP bind the RC-bound cytochrome at two distinct but partially overlapping sites.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiaceae/metabolismo , Grupo dos Citocromos c/metabolismo , Citocromos c/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Divisão Celular , Membrana Celular/metabolismo , Citocromos/química , Citocromos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Ferricianetos/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxigênio/metabolismo , Fotossíntese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade da Espécie , Espectrofotometria , Fatores de Tempo
10.
J Biol Chem ; 279(25): 26090-7, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15069076

RESUMO

The cytochrome bound to the photosynthetic reaction center of Rhodovulum sulfidophilum presents two unusual characteristics with respect to the well characterized tetraheme cytochromes. This cytochrome contains only three hemes because it lacks the peptide motif CXXCH, which binds the most distal fourth heme. In addition, we show that the sixth axial ligand of the third heme is a cysteine (Cys-148) instead of the usual methionine ligand. This ligand exchange results in a very low midpoint potential (-160 +/- 10 mV). The influence of the unusual cysteine ligand on the midpoint potential of this distal heme was further investigated by site-directed mutagenesis. The midpoint potential of this heme is upshifted to +310 mV when cysteine 148 is replaced by methionine, in agreement with the typical redox properties of a His/Met coordinated heme. Because of the large increase in the midpoint potential of the distal heme in the mutant, both the native and modified high potential hemes are photooxidized at a redox poise where only the former is photooxidizable in the wild type. The relative orientation of the three hemes, determined by EPR measurements, is shown different from tetraheme cytochromes. The evolutionary basis of the concomitant loss of the fourth heme and the down-conversion of the third heme is discussed in light of phylogenetic relationships of the Rhodovulum species triheme cytochromes to other reaction center-associated tetraheme cytochromes.


Assuntos
Citocromos/química , Heme/química , Rhodovulum/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Divisão Celular , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Biológicos , Modelos Genéticos , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Plasmídeos/metabolismo , Ligação Proteica , Espectrofotometria , Relação Estrutura-Atividade
11.
Biochemistry ; 41(47): 14028-32, 2002 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-12437360

RESUMO

A gene encoding the high-potential iron-sulfur protein (HiPIP) was cloned from the purple photosynthetic bacterium Rubrivivax gelatinosus. An insertional disruption of this gene by a kanamycin resistance cartridge resulted in a significant decrease in the growth rate under photosynthetic growth conditions. Flash-induced kinetic measurements showed that the rate of reduction of the photooxidized reaction center is greatly diminished in the mutant depleted in the HiPIP. On the other hand, mutants depleted in the low- and high-potential cytochromes c(8), the two other soluble electron carriers, which have been shown to donate an electron to the reaction center in Rvi. gelatinosus, showed growth rates similar to those of the wild type under both photosynthetic and respiratory growth conditions. It was concluded that HiPIP is the major physiological electron donor to the reaction center in Rvi. gelatinosus cells grown under photosynthetic conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Betaproteobacteria/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Betaproteobacteria/genética , Betaproteobacteria/crescimento & desenvolvimento , Clonagem Molecular , Transporte de Elétrons , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Cinética , Luz , Dados de Sequência Molecular , Oxirredução , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA