Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Biol Inorg Chem ; 28(3): 301-315, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36820987

RESUMO

Zinc finger proteins specifically recognize DNA sequences and, therefore, play a crucial role in living organisms. In this study the Zn(II)-, and DNA-binding of 1MEY#, an artificial zinc finger protein consisting of three finger units was characterized by multiple methods. Fluorimetric, circular dichroism and isothermal calorimetric titrations were applied to determine the accurate stability constant of a zinc finger protein. Assuming that all three zinc finger subunits behave identically, the obtained thermodynamic data for the Zn(II) binding were ΔHbinding site = - (23.5 - 28.0) kcal/mol (depending on the applied protonation state of the cysteines) and logß'pH 7.4 = 12.2 ± 0.1, being similar to those of the CP1 consensus zinc finger peptide. The specific DNA binding of the protein can be characterized by logß'pH 7.4 = 8.20 ± 0.08, which is comparable to the affinity of the natural zinc finger proteins (Sp1, WT1, TFIIIA) toward DNA. This value is ~ 1.9 logß' unit higher than those determined for semi- or nonspecific DNA binding. Competitive circular dichroism and electrophoretic mobility shift measurements revealed that the conditional stability constant characteristic for Zn(II) binding of 1MEY# protein increased by 3.4 orders of magnitude in the presence of its target DNA sequence.


Assuntos
Peptídeos , Dedos de Zinco , Peptídeos/química , Sítios de Ligação , DNA/metabolismo , Zinco/química , Ligação Proteica
2.
Sci Rep ; 11(1): 17726, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489496

RESUMO

Telomere, the terminus of linear chromosome in eukaryotes, is composed of specific repeat DNA which is mainly synthesized by a protein complex called telomerase. The maintenance of telomere DNA is important for unlimited proliferative capacity of cancer cells. The telomerase activity is controlled by the expression level of telomerase reverse transcriptase (TERT), a catalytic unit of telomerase, in some species including human. Therefore, to reveal the regulatory mechanisms of the transcription of TERT gene is important for understanding the tumor development. We found that template activating factor-I (TAF-I), a multifunctional nuclear protein, is involved in the transcriptional activation of TERT for the maintenance of telomere DNA in HeLa cells. TAF-I maintains the histone H3 modifications involved in transcriptional activation and hypomethylated cytosines in CpG dinucleotides around the transcription start site (TSS) in the TERT gene locus. Collectively, TAF-I is involved in the maintenance of telomere DNA through the regulation of TERT transcription, then consequently the occurrence and/or recurrence of cancer cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Chaperonas de Histonas/metabolismo , Telomerase/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Chaperonas de Histonas/genética , Histonas/metabolismo , Humanos , Telomerase/genética
3.
Genes Cells ; 26(10): 830-837, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34320268

RESUMO

SET-Nup214 is a recurrent fusion gene that is mainly observed in T-cell acute lymphoblastic leukemia (T-ALL). Dysregulation of homeobox (Hox) genes is frequently observed in patients with leukemia. Consistent with this, HoxA genes are upregulated in the SET-Nup214 + T-ALL cell line and patients. Although SET-Nup214 has been reported to be recruited to the promoter regions of HoxA genes, the detailed mechanisms of how SET-Nup214 specifically binds to HoxA gene promoters and regulates HoxA gene expression are not known. In this study, we demonstrated that SET-Nup214 interacts with MLL via the SET acidic region of SET-Nup214. SET-Nup214 and MLL cooperatively enhance the promoter activity of the HoxA10 gene. Neither the SET region alone nor the Nup214 region alone sufficiently enhanced the HoxA10 gene promoter. Our results indicated that the SET portion of the SET-Nup214-fusion protein is important for interactions with MLL and transcription enhancement of the HoxA10 gene. Thus, our study will contribute to the understanding of how SET-Nup214 and MLL disturb the expression of HoxA10 gene in leukemia.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia , Proteína de Leucina Linfoide-Mieloide/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas de Ligação a DNA/genética , Expressão Gênica , Chaperonas de Histonas/genética , Proteínas Homeobox A10 , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Regiões Promotoras Genéticas
4.
Sci Rep ; 10(1): 4933, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188872

RESUMO

The Jun dimerization protein 2 (Jdp2) is expressed predominantly in granule cell progenitors (GCPs) in the cerebellum, as was shown in Jdp2-promoter-Cre transgenic mice. Cerebellum of Jdp2-knockout (KO) mice contains lower number of Atoh-1 positive GCPs than WT. Primary cultures of GCPs from Jdp2-KO mice at postnatal day 5 were more resistant to apoptosis than GCPs from wild-type mice. In Jdp2-KO GCPs, the levels of both the glutamate‒cystine exchanger Sc7a11 and glutathione were increased; by contrast, the activity of reactive oxygen species (ROS) was decreased; these changes confer resistance to ROS-mediated apoptosis. In the absence of Jdp2, a complex of the cyclin-dependent kinase inhibitor 1 (p21Cip1) and Nrf2 bound to antioxidant response elements of the Slc7a11 promoter and provide redox control to block ROS-mediated apoptosis. These findings suggest that an interplay between Jdp2, Nrf2, and p21Cip1 regulates the GCP apoptosis, which is one of critical events for normal development of the cerebellum.

5.
FEBS J ; 287(1): 205-217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31365788

RESUMO

The adenovirus (Ad) genome is believed to be packaged into the virion by forming a chromatin-like structure. The replicated viral genome is likely to be condensed through binding with viral core proteins before encapsidation. Replicated viral genomes accumulate in the central region of the nucleus, which we termed virus-induced postreplication (ViPR) body. However, the molecular mechanism by which the nuclear structure is reorganized and its functional significance in virus production are currently not understood. In this study, we found that viral packaging protein IVa2, but not capsid proteins, accumulated in the ViPR body. In addition, nucleolar chromatin regulatory proteins, nucleophosmin 1 (NPM1), upstream binding factor, and nucleolin accumulated in the ViPR body in late-stage Ad infection. NPM1 depletion increased the nuclease-resistant viral genome and delayed the ViPR body formation. These results suggested that structural changes in the infected cell nucleus depend on the formation of viral chromatin by host chromatin regulatory proteins. Because NPM1 depletion decreases production of the infectious virion, we propose that host factor-mediated viral chromatin remodeling and concomitant ViPR body formation are prerequisites for efficient encapsidation of Ad chromatin.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/genética , Replicação do DNA , DNA Viral/genética , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Células A549 , Infecções por Adenoviridae/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Viral/metabolismo , Genoma Viral , Humanos , Proteínas Nucleares/genética , Nucleofosmina , Proteínas Virais/genética , Montagem de Vírus
6.
Cell Rep ; 29(7): 1909-1922.e5, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722206

RESUMO

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is accompanied by dramatic changes in epigenetic programs, including silencing of endogenous and exogenous retroviruses. Here, we utilized replication-defective and persistent Sendai virus (SeVdp)-based vectors to monitor retroviral silencing during reprogramming. We observed that retroviral silencing occurred at an early reprogramming stage without a requirement for KLF4 or the YY1-binding site in the retroviral genome. Insertional chromatin immunoprecipitation (iChIP) enabled us to isolate factors assembled on the silenced provirus, including components of inhibitor of histone acetyltransferase (INHAT), which includes the SET/TAF-I oncoprotein. Knockdown of SET/TAF-I in mouse embryonic fibroblasts (MEFs) diminished retroviral silencing during reprogramming, and overexpression of template activating factor-I α (TAF-Iα), a SET/TAF-I isoform predominant in embryonic stem cells (ESCs), reinforced retroviral silencing by an SeVdp-based vector that is otherwise defective in retroviral silencing. Our results indicate an important role for TAF-Iα in retroviral silencing during reprogramming.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Retrovirus Endógenos , Inativação Gênica , Células-Tronco Embrionárias Murinas , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/virologia , Vírus Sendai/genética , Vírus Sendai/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
7.
J Cell Biol ; 218(10): 3223-3236, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31527146

RESUMO

The accurate regulation of phosphorylation at the kinetochore is essential for establishing chromosome bi-orientation. Phosphorylation of kinetochore proteins by the Aurora B kinase destabilizes improper kinetochore-microtubule attachments, whereas the phosphatase PP2A has a counteracting role. Imbalanced phosphoregulation leads to error-prone chromosome segregation and aneuploidy, a hallmark of cancer cells. However, little is known about the molecular events that control the balance of phosphorylation at the kinetochore. Here, we show that localization of SET/TAF1, an oncogene product, to centromeres maintains Aurora B kinase activity by inhibiting PP2A, thereby correcting erroneous kinetochore-microtubule attachment. SET localizes at the inner centromere by interacting directly with shugoshin 2, with SET levels declining at increased distances between kinetochore pairs, leading to establishment of chromosome bi-orientation. Moreover, SET overexpression induces chromosomal instability by disrupting kinetochore-microtubule attachment. Thus, our findings reveal the novel role of SET in fine-tuning the phosphorylation level at the kinetochore by balancing the activities of Aurora B and PP2A.


Assuntos
Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos
8.
Sci Rep ; 9(1): 329, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674949

RESUMO

Early growth response 1 (EGR1) is a transcription factor and regulates cellular processes such as proliferation, differentiation, and apoptosis. The expression of EGR1 is rapidly induced in response to several stimuli, and it activates the expression of downstream target genes involved in signaling cascades. EGR1 gene is also known to be transcribed in early G1 phase. However, the regulation of EGR1 transcription in early G1 phase is not clarified well. Here we found that CCCTC-binding factor (CTCF), a chromatin binding protein, is required to transcribe EGR1 gene at the onset of early G1 phase. We found that CTCF mediated the formation of higher-order chromatin structures among CTCF binding sites located in the EGR1 locus. Disruption of the CTCF-dependent higher-order chromatin structure using nuclease-dead Cas9 (dCas9)-mediated interference reduced the EGR1 transcription in early G1 phase. Collectively, we propose that CTCF has functional roles for the temporal expression of EGR1 in early G1 phase through regulation of higher-order chromatin structure organization.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Células Epiteliais/fisiologia , Fase G1 , Regulação da Expressão Gênica , Transcrição Gênica , Cromatina/metabolismo , Células HeLa , Humanos
9.
Metallomics ; 10(8): 1089-1098, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009310

RESUMO

In this work we demonstrate that the previously described reaction of sequence specific Ni(ii)-dependent hydrolytic peptide bond cleavage can be performed in complex metalloprotein molecules, such as the Cys2His2 zinc finger proteins. The cleavage within a zinc finger unit possessing a (Ser/Thr)-X-His sequence is not hindered by the presence of the Zn(ii) ions. It results in loss of the Zn(ii) ion, oxidation of the SH groups and thus, in a collapse of the functional structure. We show that such natural Ni(ii)-cleavage sites in zinc finger domains can be edited out without compromising the DNA binding specificity. Inserting a Ni(ii)-susceptible sequence between the edited zinc finger and an affinity tag allows for removal of the latter sequence by Ni(ii) ions after the protein purification. We have shown that this reaction can be executed even when a metal ion binding N-terminal His-tag is present. The cleavage product maintains the native zinc finger structure involving Zn(ii) ions. Mass spectra revealed that a Ni(ii) ion remains coordinated to the hydrolyzed protein product through the N-terminal (Ser/Thr)-X-His tripeptide segment. The fact that the Ni(ii)-dependent protein hydrolysis is influenced by the Ni(ii) concentration, pH and temperature of the reaction provides a platform for novel regulated DNA effector design.


Assuntos
Metaloproteínas/metabolismo , Níquel/farmacologia , Dedos de Zinco , Zinco/metabolismo , Sequência de Aminoácidos , Hidrólise , Modelos Moleculares , Ligação Proteica , Homologia de Sequência
10.
Front Microbiol ; 9: 1164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910790

RESUMO

Lentinula edodes mycelia (LEM) solid culture extracts contain many bioactive compounds with diverse pharmacological activities such as antitumor, antiviral, and immunopotentiating effects. In this study, we examined the anti-influenza virus activity of LEM in vitro and in vivo. LEM directly inhibited influenza virus growth in vitro at early phases of infection, possibly at the entry process of viral particles to host cells. We also found that the nasal administration of LEM increased the survival rate of infected mice, and this was likely due to the direct action of LEM on the viral growth. The oral administration of LEM showed prolonged median survival time of infected mice. Histological analysis revealed that the moderate bronchiolitis was observed in infected mice by the oral administration with LEM, and the extent of alveolitis was dramatically reduced. The orally LEM-administered mice showed a rapid activation of IFN-ß gene expression upon influenza virus infection. These results suggest that the immunopotentiation activity of LEM on type I IFN pathway represses the virus spread to distal alveolar regions from peribronchiolar regions which are primary infection sites in the mouse model. We propose that LEM has anti-influenza virus activities through the direct action on viral growth and stimulatory activity of innate immunity.

11.
Cancer Sci ; 109(5): 1731-1737, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29878624

RESUMO

This article discusses current obstacles to the rapid development of safe and effective treatments for rare cancers, and considers measures required to overcome these challenges. In order to develop novel clinical options for rare cancers, which tend to remain left out of novel therapeutic development because of their paucity, efficient recruitment of eligible patients, who tend to be widely dispersed across the country and treated at different centers, is necessary. For this purpose, it is important to establish rare cancer registries that are linked with clinical studies, to organize a central pathological diagnosis system and biobanks for rare cancers, and to consolidate patients with rare cancers to facilities that can conduct clinical studies meeting international standards. Establishing an all-Japan cooperative network is essential. Clinical studies of rare cancers have considerable limitations in study design and sample size as a result of paucity of eligible patients and, as a result, the level of confirmation of the efficacy and safety shown by the studies is relatively low. Therefore, measures to alleviate these weaknesses inherent to external conditions need to be explored. It is also important to reform the current research environment in order to develop world-leading treatment for rare cancers, including promotion of basic research, collaboration between industry and academia, and improvement of the infrastructure for clinical studies. Collaboration among a wide range of stakeholders is required to promote the clinical development of treatment for rare cancers under a nationwide consensus.


Assuntos
Neoplasias/terapia , Doenças Raras/terapia , Terapia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Colaboração Intersetorial , Japão , Neoplasias/patologia , Doenças Raras/patologia , Sistema de Registros
12.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743359

RESUMO

Respiratory epithelial cell death by influenza virus infection is responsible for the induction of inflammatory responses, but the exact cell death mechanism is not understood. Here we showed that influenza virus infection induces apoptosis and pyroptosis in normal or precancerous human bronchial epithelial cells. Apoptosis was induced only in malignant tumor cells infected with influenza virus. In human precancerous respiratory epithelial cells (PL16T), the number of apoptotic cells increased at early phases of infection, but pyroptotic cells were observed at late phases of infection. These findings suggest that apoptosis is induced at early phases of infection but the cell death pathway is shifted to pyroptosis at late phases of infection. We also found that the type I interferon (IFN)-mediated JAK-STAT signaling pathway promotes the switch from apoptosis to pyroptosis by inhibiting apoptosis possibly through the induced expression of the Bcl-xL anti-apoptotic gene. Further, the inhibition of JAK-STAT signaling repressed pyroptosis but enhanced apoptosis in infected PL16T cells. Collectively, we propose that type I IFN signaling pathway triggers pyroptosis but not apoptosis in the respiratory epithelial cells in a mutually exclusive manner to initiate proinflammatory responses against influenza virus infection.IMPORTANCE Respiratory epithelium functions as a sensor of infectious agents to initiate inflammatory responses along with cell death. However, the exact cell death mechanism responsible for inflammatory responses by influenza virus infection is still unclear. We showed that influenza virus infection induced apoptosis and pyroptosis in normal or precancerous human bronchial epithelial cells. Apoptosis was induced at early phases of infection, but the cell death pathway was shifted to pyroptosis at late phases of infection under the regulation of type I IFN signaling to promote proinflammatory cytokine production. Taken together, our results indicate that the type I IFN signaling pathway plays an important role to induce pyroptosis but represses apoptosis in the respiratory epithelial cells to initiate proinflammatory responses against influenza virus infection.


Assuntos
Apoptose , Influenza Humana/patologia , Interferon Tipo I/metabolismo , Pâncreas/patologia , Lesões Pré-Cancerosas/patologia , Piroptose , Mucosa Respiratória/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/metabolismo , Influenza Humana/virologia , Pâncreas/metabolismo , Pâncreas/virologia , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/virologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Transdução de Sinais
13.
Biophys Rev ; 10(2): 445-452, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29170971

RESUMO

A variety of cellular reactions mediated by interactions among proteins and nucleic acids requires a series of proteins called molecular chaperones. The viral genome encodes relatively few kinds of viral proteins and, therefore, host-derived cellular factors are required for virus proliferation. Here we discuss those cellular proteins known as molecular chaperones, which are essential for the assembly of functional viral DNA/RNA replicons. The function of these molecular chaperones in the cellular context is also discussed.

14.
Stem Cells ; 35(10): 2115-2128, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28782268

RESUMO

Reprogramming of cancer cells into induced pluripotent stem cells (iPSCs) is a compelling idea for inhibiting oncogenesis, especially through modulation of homeobox proteins in this reprogramming process. We examined the role of various long noncoding RNAs (lncRNAs)-homeobox protein HOXA13 axis on the switching of the oncogenic function of bone morphogenetic protein 7 (BMP7), which is significantly lost in the gastric cancer cell derived iPS-like cells (iPSLCs). BMP7 promoter activation occurred through the corecruitment of HOXA13, mixed-lineage leukemia 1 lysine N-methyltransferase, WD repeat-containing protein 5, and lncRNA HoxA transcript at the distal tip (HOTTIP) to commit the epigenetic changes to the trimethylation of lysine 4 on histone H3 in cancer cells. By contrast, HOXA13 inhibited BMP7 expression in iPSLCs via the corecruitment of HOXA13, enhancer of zeste homolog 2, Jumonji and AT rich interactive domain 2, and lncRNA HoxA transcript antisense RNA (HOTAIR) to various cis-element of the BMP7 promoter. Knockdown experiments demonstrated that HOTTIP contributed positively, but HOTAIR regulated negatively to HOXA13-mediated BMP7 expression in cancer cells and iPSLCs, respectively. These findings indicate that the recruitment of HOXA13-HOTTIP and HOXA13-HOTAIR to different sites in the BMP7 promoter is crucial for the oncogenic fate of human gastric cells. Reprogramming with octamer-binding protein 4 and Jun dimerization protein 2 can inhibit tumorigenesis by switching off BMP7. Stem Cells 2017;35:2115-2128.


Assuntos
Técnicas de Reprogramação Celular/métodos , Proteínas de Homeodomínio/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Humanos , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
15.
Biochem Biophys Res Commun ; 487(1): 96-102, 2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28392395

RESUMO

Nup98 is a component of the nuclear pore complex. The nup98-fusion genes derived by chromosome translocations are involved in hematopoietic malignancies. Here, we investigated the functions of Nup98 isoforms and two unexamined Nup98-fusion proteins, Nup98-TopIIß and Nup98-SETBP1. We first demonstrated that two Nup98 isoforms are expressed in various mouse tissues and similarly localized in the nucleus and the nuclear envelope. We also showed that Nup98-TopIIß and Nup98-SETBP1 are localized in the nucleus and partially co-localized with full-length Nup98 and a nuclear export receptor XPO1. We demonstrated that Nup98-TopIIß and Nup98-SETBP1 negatively regulate the XPO1-mediated protein export. Our results will contribute to the understanding of the molecular mechanism by which the Nup98-fusion proteins induce tumorigenesis.


Assuntos
Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Humanos , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie
16.
Nucleic Acids Res ; 45(7): 3707-3723, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28003476

RESUMO

NPM1/nucleophosmin is frequently overexpressed in various tumors, although the oncogenic role of NPM1 remains unclear. Here we revealed the link between NPM1 and nuclear factor-κB (NF-κB), a master regulator of inflammation. We found that NPM1 knockdown decreased NF-κB-mediated transcription of selected target genes by decreasing the recruitment of NF-κB p65 to the gene promoters. NPM1 is directly associated with the DNA binding domain of p65 to enhance its DNA binding activity without being a part of the DNA-NF-κB complex. This result suggests that NF-κB requires the chaperone-like function of NPM1 for DNA binding. Furthermore, we demonstrated that NPM1 was required for efficient inflammatory gene expression induced by tumor necrosis factor alpha (TNF-α) and lipopolysaccharide in fibroblasts and macrophages. The NF-κB-mediated invasion of breast cancer cells was significantly decreased by NPM1 knockdown. Our study suggests a novel mechanistic insight into the NF-κB-mediated transcription and an oncogenic role of NPM1 in both tumor cells and the tumor micro-environment through the regulation of NF-κB.


Assuntos
Regulação da Expressão Gênica , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica , Animais , Células Cultivadas , DNA/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/fisiologia , Nucleofosmina , Ligação Proteica , Fator de Transcrição RelA/metabolismo
17.
Biochem Biophys Res Commun ; 480(4): 702-708, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27983985

RESUMO

NPM1/nucleophosmin is a multifunctional and oligomeric phosphoprotein. A number of observations have suggested that changes in the oligomer formation of NPM1 could influence its biological functions, especially its oncogenic functions. To understand the functional meaning of oligomerization of NPM1/nucleophosmin, we have established a novel method to monitor protein oligomerization in cells. We utilized the split synthetic Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) bioluminescence activity and observed the change of NPM1 oligomer levels under various cell culture conditions. Our study provides a method for systematic characterization of NPM1 oligomer formation changes and for screening inhibitors of NPM1 oligomerization.


Assuntos
Proteínas Nucleares/metabolismo , Nucleoplasminas/metabolismo , Sítios de Ligação , Dimerização , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Nucleofosmina , Ligação Proteica , Mapeamento de Interação de Proteínas
18.
Viruses ; 8(10)2016 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-27782081

RESUMO

In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families.


Assuntos
Núcleo Celular/imunologia , Núcleo Celular/virologia , Vírus de DNA/imunologia , Vírus de DNA/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Animais , Vírus de DNA/genética , Humanos
19.
Traffic ; 17(11): 1168-1180, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27492875

RESUMO

In adenoviral virions, the genome is organized into a chromatin-like structure by viral basic core proteins. Consequently viral DNAs must be replicated, chromatinized and packed into progeny virions in infected cells. Although viral DNA replication centers can be visualized by virtue of viral and cellular factors, the spatiotemporal regulation of viral genomes during subsequent steps remains to be elucidated. In this study, we used imaging analyses to examine the fate of adenoviral genomes and to track newly replicated viral DNA as well as replication-related factors. We show de novo formation of a subnuclear domain, which we termed Virus-induced Post-Replication (ViPR) body, that emerges concomitantly with or immediately after disintegration of initial replication centers. Using a nucleoside analogue, we show that viral genomes continue being synthesized in morphologically distinct replication compartments at the periphery of ViPR bodies and are then transported inward. In addition, we identified a nucleolar protein Mybbp1a as a molecular marker for ViPR bodies, which specifically associated with viral core protein VII. In conclusion, our work demonstrates the formation of previously uncharacterized viral DNA replication compartments specific for late phases of infection that produce progeny viral genomes accumulating in ViPR bodies.


Assuntos
Adenoviridae/genética , Replicação do DNA/genética , Genoma Viral , Adenoviridae/patogenicidade , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/virologia , DNA Viral/genética , Proteínas de Ligação a DNA , Humanos , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte Proteico , Proteínas de Ligação a RNA , Fatores de Transcrição , Replicação Viral
20.
Mol Cell Biol ; 36(13): 1820-35, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27114368

RESUMO

Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , NF-kappa B/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Transporte Proteico , Células HEK293 , Células HeLa , Humanos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA