Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(3): e55916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601366

RESUMO

Aim  This study aimed to evaluate the diagnostic feasibility of magnetic resonance imaging (MRI) findings and texture features (TFs) for differentiating uterine endometrial carcinoma from uterine carcinosarcoma. Methods This retrospective study included 102 patients who were histopathologically diagnosed after surgery with uterine endometrial carcinoma (n=68) or uterine carcinosarcoma (n=34) between January 2008 and December 2021. We assessed conventional MRI findings and measurements (cMRFMs) and TFs on T2-weighted images (T2WI) and apparent diffusion coefficient (ADC) map, as well as their combinations, in differentiating between uterine endometrial carcinoma and uterine carcinosarcoma. The least absolute shrinkage and selection operator (LASSO) was used to select three features with the highest absolute value of the LASSO regression coefficient for each model and construct a discriminative model. Binary logistic regression analysis was used to analyze the disease models and conduct receiver operating characteristic analyses on the cMRFMs, T2WI-TFs, ADC-TFs, and their combined model to compare the two diseases. Results A total of four models were constructed from each of the three selected features. The area under the curve (AUC) of the discriminative model using these features was 0.772, 0.878, 0.748, and 0.915 for the cMRFMs, T2WI-TFs, ADC-TFs, and a combined model of cMRFMs and TFs, respectively. The combined model showed a higher AUC than the other models, with a high diagnostic performance (AUC=0.915). Conclusion A combined model using cMRFMs and TFs might be helpful for the differential diagnosis of uterine endometrial carcinoma and uterine carcinosarcoma.

2.
J Kidney Cancer VHL ; 10(3): 61-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789903

RESUMO

Translocation and transcription factor E3 (TFE3)-rearranged renal cell carcinoma (RCC) is a rare subtype of RCCs characterised by the fusion of the TFE3 transcription factor genes on chromosome Xp11.2 with one of the multiple genes. TFE3-rearranged RCC occurs mainly in children and adolescents, although middle-aged cases are also observed. As computed tomography (CT)/magnetic resonance imaging (MRI) findings of TFE3-rearranged RCC overlap with those of other RCCs, differential diagnosis is often challenging. In the present case reports, we highlighted the features of the fluorine-18-labelled fluorodeoxyglucose positron emission tomography with CT (FDG PET-CT) in TFE3-rearranged RCCs. Due to the rarity of the disease, FDG PET-CT features of TFE3-rearranged RCC have not yet been reported. In our cases, FDG PET-CT showed high standardised uptake values (SUVmax) of 7.14 and 6.25 for primary tumours. This might imply that TFE3-rearranged RCC has high malignant potential. This is conceivable when the molecular background of the disease is considered in terms of glucose metabolism. Our cases suggest that a high SUVmax of the primary tumour is a clinical characteristic of TFE3-rearranged RCCs.

3.
Sci Rep ; 13(1): 17361, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833438

RESUMO

We developed a 3D convolutional neural network (CNN)-based automatic kidney segmentation method for patients with chronic kidney disease (CKD) using MRI Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images. The dataset comprised 100 participants with renal dysfunction (RD; eGFR < 45 mL/min/1.73 m2) and 70 without (non-RD; eGFR ≥ 45 mL/min/1.73 m2). The model was applied to the right, left, and both kidneys; it was first evaluated on the non-RD group data and subsequently on the combined data of the RD and non-RD groups. For bilateral kidney segmentation of the non-RD group, the best performance was obtained when using IP image, with a Dice score of 0.902 ± 0.034, average surface distance of 1.46 ± 0.75 mm, and a difference of - 27 ± 21 mL between ground-truth and automatically computed volume. Slightly worse results were obtained for the combined data of the RD and non-RD groups and for unilateral kidney segmentation, particularly when segmenting the right kidney from the OP images. Our 3D CNN-assisted automatic segmentation tools can be utilized in future studies on total kidney volume measurements and various image analyses of a large number of patients with CKD.


Assuntos
Redes Neurais de Computação , Insuficiência Renal Crônica , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Rim/diagnóstico por imagem , Insuficiência Renal Crônica/diagnóstico por imagem
4.
Eur J Radiol Open ; 11: 100500, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408663

RESUMO

Purpose: To assess the usefulness of contrast-enhanced 3D STIR FLAIR imaging for evaluation of pituitary adenomas. Methods: Patients with pituitary adenomas underwent MR examinations including contrast-enhanced 3D STIR FLAIR and 2D T1-weighted (T1W) imaging. We subjectively compared the two techniques in terms of 10 categories. In addition, images were rated by side-by-side comparisons into three outcomes: 3D STIR FLAIR imaging superior, equal, or 2D T1W imaging superior. Additionally, the added value of 3D STIR FLAIR imaging for adenoma detection over conventional MR imaging was assessed. Results: Twenty-one patients were included in this study. 3D STIR FLAIR imaging offered significantly better images than 2D T1W imaging in terms of three categories, including overall visualization of the cranial nerves in the cavernous sinus (mean 4.0 vs. 2.8, p < 0.0001), visualization of the optic nerves and chiasm (mean 4.0 vs. 2.6, p < 0.0001), and severity of susceptibility artifacts (mean 0.0 vs. 0.4, p = 0.004). In the side-by-side comparison, 3D STIR FLAIR imaging was judged to be significantly superior to 2D T1W imaging for overall lesion conspicuity (62% vs. 19%, p = 0.049) and border between the adenoma and the pituitary gland (67% vs. 19%, p = 0.031). The addition of 3D STIR FLAIR imaging significantly improved the adenoma detection of conventional MR imaging. Conclusion: 3D STIR FLAIR imaging improved overall lesion conspicuity compared to 2D T1W imaging. We suggest that 3D STIR FLAIR imaging is recommended as a supplemental technique when pituitary adenomas are invisible or equivocal on conventional imaging.

5.
Sci Rep ; 12(1): 14776, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042326

RESUMO

We evaluated a multiclass classification model to predict estimated glomerular filtration rate (eGFR) groups in chronic kidney disease (CKD) patients using magnetic resonance imaging (MRI) texture analysis (TA). We identified 166 CKD patients who underwent MRI comprising Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images, apparent diffusion coefficient (ADC) maps, and T2* maps. The patients were divided into severe, moderate, and control groups based on eGFR borderlines of 30 and 60 mL/min/1.73 m2. After extracting 93 texture features (TFs), dimension reduction was performed using inter-observer reproducibility analysis and sequential feature selection (SFS) algorithm. Models were created using linear discriminant analysis (LDA); support vector machine (SVM) with linear, rbf, and sigmoid kernels; decision tree (DT); and random forest (RF) classifiers, with synthetic minority oversampling technique (SMOTE). Models underwent 100-time repeat nested cross-validation. Overall performances of our classification models were modest, and TA based on T1-weighted IP/OP/WO images provided better performance than those based on ADC and T2* maps. The most favorable result was observed in the T1-weighted WO image using RF classifier and the combination model was derived from all T1-weighted images using SVM classifier with rbf kernel. Among the selected TFs, total energy and energy had weak correlations with eGFR.


Assuntos
Imageamento por Ressonância Magnética , Insuficiência Renal Crônica , Humanos , Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Insuficiência Renal Crônica/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos , Máquina de Vetores de Suporte
6.
J Ovarian Res ; 15(1): 65, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35610706

RESUMO

OBJECTIVE: To evaluate the diagnostic utility of conventional magnetic resonance imaging (MRI)-based characteristics and a texture analysis (TA) for discriminating between ovarian thecoma-fibroma groups (OTFGs) and ovarian granulosa cell tumors (OGCTs). METHODS: This retrospective multicenter study enrolled 52 patients with 32 OGCTs and 21 OTFGs, which were dissected and pathologically diagnosed between January 2008 and December 2019. MRI-based features (MBFs) and texture features (TFs) were evaluated and compared between OTFGs and OGCTs. A least absolute shrinkage and selection operator (LASSO) regression analysis was performed to select features and construct the discriminating model. ROC analyses were conducted on MBFs, TFs, and their combination to discriminate between the two diseases. RESULTS: We selected 3 features with the highest absolute value of the LASSO regression coefficient for each model: the apparent diffusion coefficient (ADC), peripheral cystic area, and contrast enhancement in the venous phase (VCE) for the MRI-based model; the 10th percentile, difference variance, and maximal correlation coefficient for the TA-based model; and ADC, VCE, and the difference variance for the combination model. The areas under the curves of the constructed models were 0.938, 0.817, and 0.941, respectively. The diagnostic performance of the MRI-based and combination models was similar (p = 0.38), but significantly better than that of the TA-based model (p < 0.05). CONCLUSIONS: The conventional MRI-based analysis has potential as a method to differentiate OTFGs from OGCTs. TA did not appear to be of any additional benefit. Further studies are needed on the use of these methods for a preoperative differential diagnosis of these two diseases.


Assuntos
Fibroma , Tumor de Células da Granulosa , Tumor da Célula Tecal , Feminino , Fibroma/diagnóstico por imagem , Tumor de Células da Granulosa/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Ovarianas , Curva ROC , Estudos Retrospectivos , Tumor da Célula Tecal/diagnóstico por imagem
7.
Sci Rep ; 11(1): 9821, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972636

RESUMO

To develop a machine learning (ML) model that predicts disease groups or autoantibodies in patients with idiopathic inflammatory myopathies (IIMs) using muscle MRI radiomics features. Twenty-two patients with dermatomyositis (DM), 14 with amyopathic dermatomyositis (ADM), 19 with polymyositis (PM) and 19 with non-IIM were enrolled. Using 2D manual segmentation, 93 original features as well as 93 local binary pattern (LBP) features were extracted from MRI (short-tau inversion recovery [STIR] imaging) of proximal limb muscles. To construct and compare ML models that predict disease groups using each set of features, dimensional reductions were performed using a reproducibility analysis by inter-reader and intra-reader correlation coefficients, collinearity analysis, and the sequential feature selection (SFS) algorithm. Models were created using the linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector machine (SVM), k-nearest neighbors (k-NN), random forest (RF) and multi-layer perceptron (MLP) classifiers, and validated using tenfold cross-validation repeated 100 times. We also investigated whether it was possible to construct models predicting autoantibody status. Our ML-based MRI radiomics models showed the potential to distinguish between PM, DM, and ADM. Models using LBP features provided better results, with macro-average AUC values of 0.767 and 0.714, accuracy of 61.2 and 61.4%, and macro-average recall of 61.9 and 59.8%, in the LDA and k-NN classifiers, respectively. In contrast, the accuracies of radiomics models distinguishing between non-IIM and IIM disease groups were low. A subgroup analysis showed that classification models for anti-Jo-1 and anti-ARS antibodies provided AUC values of 0.646-0.853 and 0.692-0.792, with accuracy of 71.5-81.0 and 65.8-78.3%, respectively. ML-based TA of muscle MRI may be used to predict disease groups or the autoantibody status in patients with IIM and is useful in non-invasive assessments of disease mechanisms.


Assuntos
Dermatomiosite/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Músculos/diagnóstico por imagem , Polimiosite/diagnóstico , Adulto , Idoso , Anticorpos Antinucleares/análise , Anticorpos Antinucleares/imunologia , Antígenos Ly/imunologia , Biópsia , Dermatomiosite/imunologia , Dermatomiosite/patologia , Diagnóstico Diferencial , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Músculos/imunologia , Músculos/patologia , Polimiosite/imunologia , Polimiosite/patologia , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Ativador de Plasminogênio Tipo Uroquinase/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA