Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 260(2): 607-624, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35947213

RESUMO

The medicinal plant Catharanthus roseus biosynthesizes many important drugs for human health, including the anticancer monoterpene indole alkaloids (MIAs) vinblastine and vincristine. Over the past decades, the continuous increase in pharmaceutical demand has prompted several research groups to characterize MIA biosynthetic pathways for considering future metabolic engineering processes of supply. In line with previous work suggesting that diversification can potentially occur at various steps along the vindoline branch, we were here interested in investigating the involvement of distinct isoforms of tabersonine-16-O-methyltransferase (16OMT) which plays a pivotal role in the MIA biosynthetic pathway. By combining homology searches based on the previously characterized 16OMT1, phylogenetic analyses, functional assays in yeast, and biochemical and in planta characterizations, we identified a second isoform of 16OMT, referred to as 16OMT2. 16OMT2 appears to be a multifunctional enzyme working on both MIA and flavonoid substrates, suggesting that a constrained evolution of the enzyme for accommodating the MIA substrate has probably occurred to favor the apparition of 16OMT2 from an ancestral specific flavonoid-O-methyltransferase. Since 16OMT1 and 16OMT2 displays a high sequence identity and similar kinetic parameters for 16-hydroxytabersonine, we postulate that 16OMT1 may result from a later 16OMT2 gene duplication accompanied by a continuous neofunctionalization leading to an almost complete loss of flavonoid O-methyltransferase activity. Overall, these results participate in increasing our knowledge on the evolutionary processes that have likely led to enzyme co-optation for MIA synthesis.


Assuntos
Alcaloides , Antineoplásicos , Catharanthus , Alcaloides/metabolismo , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética
2.
Plant J ; 111(5): 1308-1323, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35778946

RESUMO

Terpene synthases (TPSs) have diverse biological functions in plants. Though the roles of TPSs in herbivore defense are well established in many plant species, their role in bacterial defense has been scarce and is emerging. Through functional genomics, here we report the in planta role of potato (Solanum tuberosum) terpene synthase (StTPS18) in bacterial defense. Expression of StTPS18 was highest in leaves and was induced in response to Pseudomonas syringae and methyl jasmonate treatments. The recombinant StTPS18 exhibited bona fide (E,E)-farnesol synthase activity forming a sesquiterpenoid, (E,E)-farnesol as the sole product, utilising (E,E)-farnesyl diphosphate (FPP). Subcellular localization of GFP fusion protein revealed that StTPS18 is localized to the cytosol. Silencing and overexpression of StTPS18 in potato resulted in reduced and enhanced tolerance, respectively, to bacterial pathogens P. syringae and Ralstonia solanacearum. Bacterial growth assay using medium containing (E,E)-farnesol significantly inhibited P. syringae growth. Moreover, StTPS18 overexpressing transgenic potato and Nicotiana tabacum leaves, and (E,E)-farnesol and P. syringae infiltrated potato leaves exhibited elevated expression of sterol pathway and members of pathogenesis-related genes with enhanced phytosterol accumulation. Interestingly, enhanced phytosterols in 13 C3 -(E,E)-farnesol infiltrated potato leaves were devoid of any noticeable 13 C labeling, indicating no direct utilization of (E,E)-farnesol in phytosterols formation. Furthermore, leaves of StTPS18 overexpressing transgenic lines had no detectable (E,E)-farnesol similar to the control plant, and emitted lower levels of sesquiterpenes than the control. These findings point towards an indirect involvement of StTPS18 and its product (E,E)-farnesol in bacterial defense through upregulation of phytosterol biosynthesis and defense genes.


Assuntos
Fitosteróis , Solanum tuberosum , Farneseno Álcool/metabolismo , Fitosteróis/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Nicotiana/metabolismo
3.
Methods Mol Biol ; 2505: 301-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732954

RESUMO

Madagascar periwinkle (Catharanthus roseus, family Apocynaceae) is a reservoir of more than 130 monoterpene indole alkaloids (MIAs) including the famous anti-neoplastic dimeric MIAs vinblastine and vincristine, and anti-hypertensive monomeric MIAs ajmalicine and serpentine. Understanding the biosynthetic steps and regulatory factors leading to the formation of MIAs is crucial for rational engineering to achieve targeted enhancement of different MIAs. Due to its highly recalcitrant nature, C. roseus is considered genetically non-tractable for transformation at the whole-plant level. Though few reports have demonstrated tissue culture-mediated regeneration and transformation of C. roseus at whole-plant level recently, the efficiency and reproducibility of these protocols have been a major challenge. To overcome this, we have developed a tissue-culture-independent Agrobacterium-mediated in planta transformation method in C. roseus. Using this method, we were able to efficiently generate stable transgenic plants without relying on the cumbersome methods of tissue-culture regeneration and transformation. Moreover, the transformed plants obtained through this in planta method exhibited stability in subsequent generations. Our method is useful not only for the elucidation of biosynthetic and regulatory steps involved in MIA formation through transgenic plant approach but also for metabolic engineering at the whole-plant level in C. roseus.


Assuntos
Catharanthus , Vinca , Agrobacterium/genética , Agrobacterium/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reprodutibilidade dos Testes , Vimblastina
4.
Methods Mol Biol ; 2408: 147-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325422

RESUMO

Virus-induced gene silencing (VIGS) is a functional genomics tool to transiently downregulate the expression of target gene(s) by exploiting the plant's innate defense mechanism against invading RNA viruses. VIGS is a rapid and efficient approach to analyze the gene function, particularly, in the plants that are not amenable to stable genetic transformation. This strategy has been successfully used to decipher the function of several genes and transcription factors involved in the biosynthesis of specialized metabolites and regulation of specialized metabolism, respectively, in different medicinal and aromatic plants. Here, we describe a detailed Tobacco rattle virus (TRV)-mediated VIGS protocol for silencing of the gene encoding Phytoene desaturase (PDS) in important medicinal plants Catharanthus roseus, Calotropis gigantean, Rauwolfia serpentina, and Ocimum basilicum. Our methods allow the study of gene function within 3-4 weeks after agro-inoculation, and can be an easy and efficient approach for future studies on understanding of the biosynthesis of specialized metabolites in these important medicinal plants.


Assuntos
Vírus de Plantas , Plantas Medicinais , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genômica , Vírus de Plantas/genética , Plantas Medicinais/genética
5.
Sci Rep ; 12(1): 1602, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102209

RESUMO

The medicinal properties of Ashwagandha (Withania somnifera) are attributed to triterpenoid steroidal lactones, withanolides, which are proposed to be derived from phytosterol pathway, through the action of cytochrome P450 (CYP450) enzymes. Here, we report the characterization of three transcriptome-mined CYP450 genes (WsCYP749B1, WsCYP76 and WsCYP71B10), which exhibited induced expression in response to methyl jasmonate treatment indicating their role in secondary metabolism. All three WsCYP450s had the highest expression in leaf compared to other tissues. In planta characterization of WsCYP450s through virus induced gene silencing (VIGS) and transient overexpression approaches and subsequent metabolite analysis indicated differential modulation in the accumulation of certain withanolides in W. somnifera leaves. While WsCYP749B1-vigs significantly enhanced withaferin A (~ 450%) and reduced withanolide A (~ 50%), its overexpression drastically led to enhanced withanolide A (> 250%) and withanolide B (> 200%) levels and reduced 12-deoxywithastramonolide (~ 60%). Whereas WsCYP76-vigs led to reduced withanolide A (~ 60%) and its overexpression increased withanolide A (~ 150%) and reduced 12-deoxywithastramonolide (~ 60%). Silencing and overexpression of WsCYP71B10 resulted in significant reduction of withanolide B (~ 50%) and withanolide A (~ 60%), respectively. Further, while VIGS of WsCYP450s negatively affected the expression of pathogenesis-related (PR) genes and compromised tolerance to bacteria P. syringae DC3000, their overexpression in W. somnifera and transgenic tobacco led to improved tolerance to the bacteria. Overall, these results showed that the identified WsCYP450s have a role in one or several steps of withanolides biosynthetic pathway and are involved in conferring tolerance to biotic stress.


Assuntos
Withania
6.
Methods Mol Biol ; 2172: 139-154, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32557367

RESUMO

Virus-induced gene silencing (VIGS) has emerged as a fast and efficient reverse and forward genetics tool to study gene function in model plants as well as in agriculturally important plants. In addition, VIGS approach has been successfully used to provide insights into the role of several genes and regulators involved in plant secondary metabolism. Ashwagandha (Withania somnifera) is an important Indian medicinal plant that accumulates pharmacologically important triterpenoid steroidal lactones, which are collectively termed as withanolides. W. somnifera being a highly recalcitrant plant for genetic transformation, Tobacco rattle virus (TRV)-mediated VIGS was established by our group to facilitate understanding of withanolides' pathway. Here, we describe a detailed procedure to carry out VIGS for gene function studies in W. somnifera.


Assuntos
Plantas Medicinais/metabolismo , Withania/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Extratos Vegetais/genética , Extratos Vegetais/metabolismo , Plantas Medicinais/genética , Withania/genética , Vitanolídeos/metabolismo
7.
Plant Cell Physiol ; 60(3): 672-686, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541044

RESUMO

The medicinal properties of Ashwagandha (Withania somnifera) are accredited to a group of compounds called withanolides. 24-Methylene cholesterol is the intermediate for sterol biosynthesis and a proposed precursor of withanolide biogenesis. However, conversion of 24-methylene cholesterol to withaferin A and other withanolides has not yet been biochemically dissected. Hence, in an effort to fill this gap, an important gene, encoding S-adenosyl l-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1), involved in the first committed step of sterol biosynthesis, from W. somnifera was targeted in the present study. Though SMT1 has been characterized in model plants such as Nicotiana tabacum and Arabidopsis thaliana, its functional role in phytosterol and withanolide biosynthesis was demonstrated for the first time in W. somnifera. Since SMT1 acts at many steps preceding the withanolide precursor, the impact of this gene in channeling of metabolites for withanolide biosynthesis and its regulatory nature was illustrated by suppressing the gene in W. somnifera via the RNA interference (RNAi) approach. Interestingly, down-regulation of SMT1 in W. somnifera led to reduced levels of campesterol, sitosterol and stigmasterol, with an increase of cholesterol content in the transgenic RNAi lines. In contrast, SMT1 overexpression in transgenic N. tabacum enhanced the level of all phytosterols except cholesterol, which was not affected. The results established that SMT1 plays a crucial role in W. somnifera withanolide biosynthesis predominantly through the campesterol and stigmasterol routes.


Assuntos
Fitosteróis/metabolismo , Extratos Vegetais/metabolismo , Withania/metabolismo , Vitanolídeos/metabolismo , Interferência de RNA
8.
Front Plant Sci ; 9: 942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034406

RESUMO

Catharanthus roseus is the sole source of two of the most important anticancer monoterpene indole alkaloids (MIAs), vinblastine and vincristine and their precursors, vindoline and catharanthine. The MIAs are produced from the condensation of precursors derived from indole and terpene secoiridoid pathways. It has been previously reported that the terpene moiety limits MIA biosynthesis in C. roseus. Here, to overcome this limitation and enhance MIAs levels in C. roseus, bifunctional geranyl(geranyl) diphosphate synthase [G(G)PPS] and geraniol synthase (GES) that provide precursors for early steps of terpene moiety (secologanin) formation, were overexpressed transiently by agroinfiltration and stably by Agrobacterium-mediated transformation. Both transient and stable overexpression of G(G)PPS and co-expression of G(G)PPS+GES significantly enhanced the accumulation of secologanin, which in turn elevated the levels of monomeric MIAs. In addition, transgenic C. roseus plants exhibited increased levels of root alkaloid ajmalicine. The dimeric alkaloid vinblastine was enhanced only in G(G)PPS but not in G(G)PPS+GES transgenic lines that correlated with transcript levels of peroxidase-1 (PRX1) involved in coupling of vindoline and catharanthine into 3',4'-anhydrovinblastine, the immediate precursor of vinblastine. Moreover, first generation (T1) lines exhibited comparable transcript and metabolite levels to that of T0 lines. In addition, transgenic lines displayed normal growth similar to wild-type plants indicating that the bifunctional G(G)PPS enhanced flux toward both primary and secondary metabolism. These results revealed that improved availability of early precursors for terpene moiety biosynthesis enhanced production of MIAs in C. roseus at the whole plant level. This is the first report demonstrating enhanced accumulation of monomeric and dimeric MIAs including root MIA ajmalicine in C. roseus through transgenic approaches.

9.
New Phytol ; 215(3): 1115-1131, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28649699

RESUMO

Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense.


Assuntos
Adaptação Fisiológica , Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Withania/metabolismo , Vitanolídeos/metabolismo , Acetatos/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Álcoois Benzílicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Ciclopentanos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Genes de Plantas , Glucosídeos/farmacologia , Oxilipinas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Análise de Sequência de Proteína , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Regulação para Cima/efeitos dos fármacos , Withania/genética
10.
Front Plant Sci ; 7: 1129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27516768

RESUMO

Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

11.
Plant Cell Rep ; 33(7): 1005-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24682521

RESUMO

KEY MESSAGE: HMGS functions in phytosterol biosynthesis, development and stress responses. F-244 could specifically-inhibit HMGS in tobacco BY-2 cells and Brassica seedlings. An update on HMGS from higher plants is presented. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) is the second enzyme in the mevalonate pathway of isoprenoid biosynthesis and catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce S-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Besides HMG-CoA reductase (HMGR), HMGS is another key enzyme in the regulation of cholesterol and ketone bodies in mammals. In plants, it plays an important role in phytosterol biosynthesis. Here, we summarize the past investigations on eukaryotic HMGS with particular focus on plant HMGS, its enzymatic properties, gene expression, protein structure, and its current status of research in China. An update of the findings on HMGS from animals (human, rat, avian) to plants (Brassica juncea, Hevea brasiliensis, Arabidopsis thaliana) will be discussed. Current studies on HMGS have been vastly promoted by developments in biochemistry and molecular biology. Nonetheless, several limitations have been encountered, thus some novel advances in HMGS-related research that have recently emerged will be touched on.


Assuntos
Evolução Molecular , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Ácido Mevalônico/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/enzimologia , Brassica/enzimologia , China , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hevea/enzimologia , Humanos , Hidroximetilglutaril-CoA Sintase/química , Redes e Vias Metabólicas , Dados de Sequência Molecular , Filogenia , Fitosteróis/biossíntese , Proteínas de Plantas/genética , Ratos , Pesquisa/tendências , Homologia de Sequência de Aminoácidos
12.
Mol Plant ; 6(5): 1531-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23543438

RESUMO

Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Catharanthus/enzimologia , Difosfatos/metabolismo , Diterpenos/metabolismo , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Multimerização Proteica , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Vias Biossintéticas/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Ensaios Enzimáticos , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espaço-Temporal , Frações Subcelulares/enzimologia
13.
Plant Cell ; 21(12): 4002-17, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20028839

RESUMO

Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.


Assuntos
Antirrhinum/enzimologia , Farnesiltranstransferase/metabolismo , Nicotiana/enzimologia , Sesquiterpenos/metabolismo , Antirrhinum/genética , Clonagem Molecular , Difosfatos/metabolismo , Diterpenos/metabolismo , Farnesiltranstransferase/genética , Flores/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Nicotiana/genética
14.
Planta ; 221(6): 844-56, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15770484

RESUMO

3-Hydroxy-3-methylglutaryl-coenzyme-A (HMG-CoA) synthase (HMGS; EC 2.3.3.10) synthesizes HMG-CoA, a substrate for mevalonate biosynthesis in the isoprenoid pathway. It catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA (AcAc-CoA) to yield S-HMG-CoA and HS-CoA. In Brassica juncea (Indian mustard), HMGS is encoded by four isogenes (BjHMGS1-BjHMGS4). We have already enzymatically characterized recombinant BjHMGS1 expressed in Escherichia coli, and have identified its residues that are significant in catalysis. To further study HMGS mRNA expression that is developmentally regulated in flowers and seedlings, we have examined its mRNA distribution by in situ hybridization and reverse transcriptase-polymerase chain reaction (RT-PCR). We observed predominant localization of HMGS mRNA in the stigmas and ovules of flower buds and in the piths of seedling hypocotyls. RT-PCR analysis revealed that BjHMGS1 and BjHMGS2 but not BjHMGS3 and BjHMGS4were expressed in floral buds. To investigate the subcellular localization of BjHMGS1, we fused BjHMGS1 translationally in-frame either to the N- or C-terminus of green fluorescent protein (GFP). BjHMGS1-GFP and GFP-BjHMGS1 fusions were used in particle gun bombardment of onion epidermal cells and tobacco BY-2 cells. The GFP-BjHMGS1 construct was also used in agroinfiltration of tobacco leaves. Both GFP-fusion proteins were observed transiently expressed in the cytosol on confocal microscopy of onion epidermal cells, tobacco BY-2 cells, and agroinfiltrated tobacco leaves. Further, subcellular fractionation of total proteins from transgenic plants expressing GFP-BjHMGS1 derived from Agrobacterium-mediated transformation confirmed that BjHMGS1 is a cytosolic enzyme. We suggest that the presence of BjHMGS isoforms is likely related to the specialization of each in different cellular and metabolic processes rather than to a different intracellular compartmentation of the enzyme.


Assuntos
Hidroximetilglutaril-CoA Sintase/metabolismo , Mostardeira/enzimologia , RNA Mensageiro/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroximetilglutaril-CoA Sintase/genética , Isoenzimas , Dados de Sequência Molecular , Cebolas , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana
15.
Biochem J ; 383(Pt. 3): 517-27, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15233626

RESUMO

3-hydroxy-3-methylglutaryl (HMG)-CoA synthase (HMGS; EC 2.3.3.10) is the second enzyme in the cytoplasmic mevalonate pathway of isoprenoid biosynthesis, and catalyses the condensation of acetyl-CoA with acetoacetyl-CoA (AcAc-CoA) to yield S-HMG-CoA. In this study, we have first characterized in detail a plant HMGS, Brassica juncea HMGS1 (BjHMGS1), as a His6-tagged protein from Escherichia coli. Native gel electrophoresis analysis showed that the enzyme behaves as a homodimer with a calculated mass of 105.8 kDa. It is activated by 5 mM dithioerythreitol and is inhibited by F-244 which is specific for HMGS enzymes. It has a pH optimum of 8.5 and a temperature optimum of 35 degrees C, with an energy of activation of 62.5 J x mol(-1). Unlike cytosolic HMGS from chicken and cockroach, cations like Mg2+, Mn2+, Zn2+ and Co2+ did not stimulate His6-BjHMGS1 activity in vitro; instead all except Mg2+ were inhibitory. His6-BjHMGS1 has an apparent K(m-acetyl-CoA) of 43 microM and a V(max) of 0.47 micromol x mg(-1) x min(-1), and was inhibited by one of the substrates (AcAc-CoA) and by both products (HMG-CoA and HS-CoA). Site-directed mutagenesis of conserved amino acid residues in BjHMGS1 revealed that substitutions R157A, H188N and C212S resulted in a decreased V(max), indicating some involvement of these residues in catalytic capacity. Unlike His6-BjHMGS1 and its soluble purified mutant derivatives, the H188N mutant did not display substrate inhibition by AcAc-CoA. Substitution S359A resulted in a 10-fold increased specific activity. Based on these kinetic analyses, we generated a novel double mutation H188N/S359A, which resulted in a 10-fold increased specific activity, but still lacking inhibition by AcAc-CoA, strongly suggesting that His-188 is involved in conferring substrate inhibition on His6-BjHMGS1. Substitution of an aminoacyl residue resulting in loss of substrate inhibition has never been previously reported for any HMGS.


Assuntos
Hidroximetilglutaril-CoA Sintase/genética , Mostardeira/enzimologia , Acetil-CoA Hidrolase/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Arginina/genética , Proteínas Aviárias/química , Cátions/metabolismo , Galinhas/genética , Dicroísmo Circular/métodos , Baratas/genética , Ácidos Graxos Insaturados/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Histidina/biossíntese , Histidina/química , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidroximetilglutaril-CoA Sintase/biossíntese , Hidroximetilglutaril-CoA Sintase/química , Hidroximetilglutaril-CoA Sintase/metabolismo , Proteínas de Insetos/química , Cinética , Lactonas/metabolismo , Camundongos , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Alinhamento de Sequência/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA