Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Eur J Pharmacol ; 974: 176612, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677537

RESUMO

One of the main pathological features of chronic obstructive pulmonary disease (COPD) is the loss of functional alveolar tissue as a consequence of impaired regenerative capacities (emphysema). Recent research suggests that the secretome from mesenchymal cells, particularly extracellular vesicles (EVs), may possess regenerative properties beneficial for lung repair. However, the regenerative potential of the soluble factors (SFs) within the secretome remains largely unexplored in COPD. To this extent, we purified EVs and SFs secreted by lung fibroblasts to generate EV-enriched and SF-enriched fractions, and evaluated their effects on elastase-induced lung injury in both precision-cut lung slices (PCLS) and a mouse model. EV- and SF-enriched fractions were concentrated and purified from the conditioned medium of cultured MRC-5 lung fibroblasts using a combination of ultrafiltration and size exclusion chromatography, and were subsequently characterized according to the MISEV guidelines. Treatment with EV- or SF-enriched concentrates prevented and improved elastase-induced emphysema in PCLS, leading to reduced lung injury and upregulated markers of alveolar epithelial cells (aquaporin 5 and surfactant protein C), indicating potential parenchymal regeneration. Accordingly, prophylactic intratracheal treatment with lung fibroblast-derived EV- and SF-enriched concentrates in vivo attenuated elastase-induced lung tissue destruction, improved lung function, and enhanced gene expression of alveolar epithelial cell markers. Here, alveolar repair not only serves the purpose of facilitating gas exchange, but also by reinstating the essential parenchymal tethering required for optimal airway mechanics. In conclusion, this study highlights the therapeutic potential of both lung fibroblast-derived EV- and SF-enriched concentrates for the treatment of lung injury and emphysema.


Assuntos
Vesículas Extracelulares , Fibroblastos , Pulmão , Elastase Pancreática , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Camundongos , Humanos , Lesão Pulmonar/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Linhagem Celular , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Solubilidade
2.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474754

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFß) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.


Assuntos
Fígado Gorduroso , Doenças Metabólicas , Humanos , Avaliação Pré-Clínica de Medicamentos , Inibidor Tecidual de Metaloproteinase-1 , Inflamação
3.
J Extracell Vesicles ; 13(3): e12419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443328

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles, mediate intercellular communication in cancer, from development to metastasis. EV-based liquid biopsy is a promising strategy for cancer diagnosis as EVs can be found in cancer patients' body fluids. In this study, the lipid composition of breast cancer-derived EVs was studied as well as the potential of blood plasma EVs for the identification of lipid biomarkers for breast cancer detection. Initially, an untargeted lipidomic analysis was carried out for a panel of cancerous and non-cancerous mammary epithelial cells and their secreted EVs. We found that breast cancer-derived EVs are enriched in sphingolipids and glycerophospholipids compared to their parental cells. The initial in vitro study showed that EVs and their parental cells can be correctly classified (100% accuracy) between cancerous and non-cancerous, as well as into their respective breast cancer subtypes, based on their lipid composition. Subsequently, an untargeted lipidomic analysis was carried out for blood plasma EVs from women diagnosed with breast cancer (primary or progressive metastatic breast cancer) as well as healthy women. Correspondingly, when blood plasma EVs were analysed, breast cancer patients and healthy women were correctly classified with an overall accuracy of 93.1%, based on the EVs' lipid composition. Similarly, the analysis of patients with primary breast cancer and healthy women showed an overall accuracy of 95% for their correct classification. Furthermore, primary and metastatic breast cancers were correctly classified with an overall accuracy of 89.5%. This reveals that the blood plasma EVs' lipids may be a promising source of biomarkers for detection of breast cancer. Additionally, this study demonstrates the usefulness of untargeted lipidomics in the study of EV lipid composition and EV-associated biomarker discovery studies. This is a proof-of-concept study and a starting point for further analysis on the identification of EV-based biomarkers for breast cancer.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Plasma , Biomarcadores , Glicerofosfolipídeos
4.
Sci Rep ; 14(1): 2831, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310102

RESUMO

The application of microfluidic devices as next-generation cell and tissue culture systems has increased impressively in the last decades. With that, a plethora of materials as well as fabrication methods for these devices have emerged. Here, we describe the rapid prototyping of microfluidic devices, using micromilling and vapour-assisted thermal bonding of polymethyl methacrylate (PMMA), to create a spheroid-on-a-chip culture system. Surface roughness of the micromilled structures was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM), showing that the fabrication procedure can impact the surface quality of micromilled substrates with milling tracks that can be readily observed in micromilled channels. A roughness of approximately 153 nm was created. Chloroform vapour-assisted bonding was used for simultaneous surface smoothing and bonding. A 30-s treatment with chloroform-vapour was able to reduce the surface roughness and smooth it to approximately 39 nm roughness. Subsequent bonding of multilayer PMMA-based microfluidic chips created a durable assembly, as shown by tensile testing. MDA-MB-231 breast cancer cells were cultured as multicellular tumour spheroids in the device and their characteristics evaluated using immunofluorescence staining. Spheroids could be successfully maintained for at least three weeks. They consisted of a characteristic hypoxic core, along with expression of the quiescence marker, p27kip1. This core was surrounded by a ring of Ki67-positive, proliferative cells. Overall, the method described represents a versatile approach to generate microfluidic devices compatible with biological applications.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Polimetil Metacrilato/química , Clorofórmio , Dispositivos Lab-On-A-Chip
5.
ACS Nano ; 15(11): 18192-18205, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34735133

RESUMO

Extracellular vesicles (EVs) secreted by cancer cells provide an important insight into cancer biology and could be leveraged to enhance diagnostics and disease monitoring. This paper details a high-throughput label-free extracellular vesicle analysis approach to study fundamental EV biology, toward diagnosis and monitoring of cancer in a minimally invasive manner and with the elimination of interpreter bias. We present the next generation of our single particle automated Raman trapping analysis─SPARTA─system through the development of a dedicated standalone device optimized for single particle analysis of EVs. Our visualization approach, dubbed dimensional reduction analysis (DRA), presents a convenient and comprehensive method of comparing multiple EV spectra. We demonstrate that the dedicated SPARTA system can differentiate between cancer and noncancer EVs with a high degree of sensitivity and specificity (>95% for both). We further show that the predictive ability of our approach is consistent across multiple EV isolations from the same cell types. Detailed modeling reveals accurate classification between EVs derived from various closely related breast cancer subtypes, further supporting the utility of our SPARTA-based approach for detailed EV profiling.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Vesículas Extracelulares/metabolismo
6.
Clin Exp Metastasis ; 38(6): 495-510, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748126

RESUMO

Colorectal carcinoma is the third most common cancer in developed countries and the second leading cause of cancer-related mortality. Interest in the influence of the intestinal microbiota on CRC emerged rapidly in the past few years, and the close presence of microbiota to the tumour mass creates a unique microenvironment in CRC. The gastrointestinal microbiota secrete factors that can contribute to CRC metastasis by influencing, for example, epithelial-to-mesenchymal transition. Although the role of EMT in metastasis is well-studied, mechanisms by which gastrointestinal microbiota contribute to the progression of CRC remain poorly understood. In this review, we will explore bacterial factors that contribute to the migration and invasion of colorectal carcinoma and the mechanisms involved. Bacteria involved in the induction of metastasis in primary CRC include Fusobacterium nucleatum, Enterococcus faecalis, enterotoxigenic Bacteroides fragilis, Escherichia coli and Salmonella enterica. Examples of prominent bacterial factors secreted by these bacteria include Fusobacterium adhesin A and Bacteroides fragilis Toxin. Most of these factors induce EMT-like properties in carcinoma cells and, as such, contribute to disease progression by affecting cell-cell adhesion, breakdown of the extracellular matrix and reorganisation of the cytoskeleton. It is of utmost importance to elucidate how bacterial factors promote CRC recurrence and metastasis to increase patient survival. So far, mainly animal models have been used to demonstrate this interplay between the host and microbiota. More human-based models are needed to study the mechanisms that promote migration and invasion and mimic the progression and recurrence of CRC.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Carcinoma/microbiologia , Movimento Celular , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/patogenicidade , Carcinoma/metabolismo , Carcinoma/secundário , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Invasividade Neoplásica , Transdução de Sinais
7.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918832

RESUMO

Three-dimensional spheroids of non-malignant MCF10A and malignant SKBR3 breast cells were used for subsequent 3D Cell-SELEX to generate aptamers for specific binding and treatment of breast cancer cells. Using 3D Cell-SELEX combined with Next-Generation Sequencing and bioinformatics, ten abundant aptamer families with specific structures were identified that selectively bind to SKBR3, and not to MCF10A cells. Multivalent aptamer polymers were synthesized by co-polymerization and analyzed for binding performance as well as therapeutic efficacy. Binding performance was determined by confocal fluorescence imaging and revealed specific binding and efficient internalization of aptamer polymers into SKBR3 spheroids. For therapeutic purposes, DNA sequences that intercalate the cytotoxic drug doxorubicin were co-polymerized into the aptamer polymers. Viability tests show that the drug-loaded polymers are specific and effective in killing SKBR3 breast cancer cells. Thus, the 3D-selected aptamers enhanced the specificity of doxorubicin against malignant over non-malignant breast cells. The innovative modular DNA aptamer platform based on 3D Cell SELEX and polymer multivalency holds great promise for diagnostics and treatment of breast cancer.

8.
Sci Rep ; 11(1): 6890, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767269

RESUMO

Clinical use of human mesenchymal stem cells (hMSCs) is limited due to their rapid clearance, reducing their therapeutic efficacy. The inflammatory cytokine IL-1ß activates hMSCs and is known to enhance their engraftment. Consequently, understanding the molecular mechanism of this inflammation-triggered adhesion is of great clinical interest to improving hMSC retention at sites of tissue damage. Integrins are cell-matrix adhesion receptors, and clustering of integrins at the nanoscale underlies cell adhesion. Here, we found that IL-1ß enhances adhesion of hMSCs via increased focal adhesion contacts in an α5ß1 integrin-specific manner. Further, through quantitative super-resolution imaging we elucidated that IL-1ß specifically increases nanoscale integrin α5ß1 availability and clustering at the plasma membrane, whilst conserving cluster area. Taken together, these results demonstrate that hMSC adhesion via IL-1ß stimulation is partly regulated through integrin α5ß1 spatial organization at the cell surface. These results provide new insight into integrin clustering in inflammation and provide a rational basis for design of therapies directed at improving hMSC engraftment.


Assuntos
Células da Medula Óssea/fisiologia , Adesão Celular , Matriz Extracelular/metabolismo , Integrina alfa5beta1/metabolismo , Interleucina-1beta/farmacologia , Células-Tronco Mesenquimais/fisiologia , Células da Medula Óssea/citologia , Membrana Celular/metabolismo , Movimento Celular , Fibronectinas/metabolismo , Humanos , Integrina alfa5beta1/genética , Células-Tronco Mesenquimais/citologia
9.
J Biomed Opt ; 26(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33715315

RESUMO

SIGNIFICANCE: Tumor detection and margin delineation are essential for successful tumor resection. However, postsurgical positive margin rates remain high for many cancers. Raman spectroscopy has shown promise as a highly accurate clinical spectroscopic diagnostic modality, but its margin delineation capabilities are severely limited by the need for pointwise application. AIM: We aim to extend Raman spectroscopic diagnostics and develop a multimodal computer vision-based diagnostic system capable of both the detection and identification of suspicious lesions and the precise delineation of disease margins. APPROACH: We first apply visual tracking of a Raman spectroscopic probe to achieve real-time tumor margin delineation. We then combine this system with protoporphyrin IX fluorescence imaging to achieve fluorescence-guided Raman spectroscopic margin delineation. RESULTS: Our system enables real-time Raman spectroscopic tumor margin delineation for both ex vivo human tumor biopsies and an in vivo tumor xenograft mouse model. We then further demonstrate that the addition of protoporphyrin IX fluorescence imaging enables fluorescence-guided Raman spectroscopic margin delineation in a tissue phantom model. CONCLUSIONS: Our image-guided Raman spectroscopic probe-tracking system enables tumor margin delineation and is compatible with both white light and fluorescence image guidance, demonstrating the potential for our system to be developed toward clinical tumor resection surgeries.


Assuntos
Neoplasias , Análise Espectral Raman , Animais , Biópsia , Diagnóstico por Imagem , Margens de Excisão , Camundongos
10.
Theranostics ; 11(4): 2006-2019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408795

RESUMO

Theranostics, the combination of diagnosis and therapy, has long held promise as a means to achieving personalised precision cancer treatments. However, despite its potential, theranostics has yet to realise significant clinical translation, largely due the complexity and overriding toxicity concerns of existing theranostic nanoparticle strategies. Methods: Here, we present an alternative nanoparticle-free theranostic approach based on simultaneous Raman spectroscopy and photodynamic therapy (PDT) in an integrated clinical platform for cancer theranostics. Results: We detail the compatibility of Raman spectroscopy and PDT for cancer theranostics, whereby Raman spectroscopic diagnosis can be performed on PDT photosensitiser-positive cells and tissues without inadvertent photosensitiser activation/photobleaching or impaired diagnostic capacity. We further demonstrate that our theranostic platform enables in vivo tumour diagnosis, treatment, and post-treatment molecular monitoring in real-time. Conclusion: This system thus achieves effective theranostic performance, providing a promising new avenue towards the clinical realisation of theranostics.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Monitoramento de Medicamentos/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral Raman/métodos , Nanomedicina Teranóstica , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Adv Sci (Weinh) ; 8(2): 2003380, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511022

RESUMO

Morphogenesis is a tightly-regulated developmental process by which tissues acquire the morphology that is critical to their function. For example, epithelial cells exhibit different 2D and 3D morphologies, induced by distinct biochemical and biophysical cues from their environment. In this work, novel hybrid matrices composed of a Matrigel and synthetic oligo(ethylene glycol)-grafted polyisocyanides (PICs) hydrogels are used to form a highly tailorable environment. Through precise control of the stiffness and cell-matrix interactions, while keeping other properties constant, a broad range of morphologies induced in Madin-Darby Canine Kidney (MDCK) cells is observed. At relatively low matrix stiffness, a large morphological shift from round hollow cysts to 2D monolayers is observed, without concomitant translocation of the mechanotransduction protein Yes-associated protein (YAP). At higher stiffness levels and enhanced cell-matrix interactions, tuned by controlling the adhesive peptide density on PIC, the hybrid hydrogels induce a flattened cell morphology with simultaneous YAP translocation, suggesting activation. In 3D cultures, the latter matrices lead to the formation of tubular structures. Thus, mixed synthetic and natural gels, such as the hybrids presented here, are ideal platforms to dissect how external physical factors can be used to regulate morphogenesis in MDCK model system, and in the future, in more complex environments.

12.
J Mater Chem B ; 8(20): 4447-4459, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32373878

RESUMO

Extracellular vesicles (EVs) are biologically-derived nanovectors important for intercellular communication and trafficking. As such, EVs show great promise as disease biomarkers and therapeutic drug delivery vehicles. However, despite the rapidly growing interest in EVs, understanding of the biological mechanisms that govern their biogenesis, secretion, and uptake remains poor. Advances in this field have been hampered by both the complex biological origins of EVs, which make them difficult to isolate and identify, and a lack of suitable imaging techniques to properly study their diverse biological roles. Here, we present a new strategy for simultaneous quantitative in vitro imaging and molecular characterisation of EVs in 2D and 3D based on Raman spectroscopy and metabolic labelling. Deuterium, in the form of deuterium oxide (D2O), deuterated choline chloride (d-Chol), or deuterated d-glucose (d-Gluc), is metabolically incorporated into EVs through the growth of parent cells on medium containing one of these compounds. Isolated EVs are thus labelled with deuterium, which acts as a bio-orthogonal Raman-active tag for direct Raman identification of EVs when introduced to unlabelled cell cultures. Metabolic deuterium incorporation demonstrates no apparent adverse effects on EV secretion, marker expression, morphology, or global composition, indicating its capacity for minimally obstructive EV labelling. As such, our metabolic labelling strategy could provide integral insights into EV biocomposition and trafficking. This approach has the potential to enable a deeper understanding of many of the biological mechanisms underpinning EVs, with profound implications for the design of EVs as therapeutic delivery vectors and applications as disease biomarkers.


Assuntos
Vesículas Extracelulares/química , Imagem Molecular , Análise Espectral Raman , Colina/química , Colina/metabolismo , Óxido de Deutério/química , Óxido de Deutério/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/química , Glucose/metabolismo , Humanos , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
13.
Langmuir ; 36(14): 3912-3923, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32250120

RESUMO

Extracellular vesicles (EVs) are secreted by the vast majority of cells and are being intensively studied due to their emerging involvement in a variety of cellular communication processes. However, the study of their cellular uptake and fate has been hampered by difficulty in imaging EVs against the cellular background. Here, we show that EVs combined with hydrophobic gold nanoclusters (AuNCs) can self-assemble into supraparticles, offering an excellent labeling strategy for high-resolution electron microscopic imaging in vitro. We have tracked and visualized the reuptake of breast cancer cell-derived EV AuNC supraparticles into their parent cells, from early endocytosis to lysosomal degradation, using focused ion beam-scanning electron microscopy (FIB-SEM). The presence of gold within the EVs and lysosomes was confirmed via DF-STEM EDX analysis of lift-out sections. The demonstrated formation of AuNC EV supraparticles will facilitate future applications in EV imaging as well as the EV-assisted cellular delivery of AuNCs.

14.
Clin Cancer Res ; 24(14): 3397-3408, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29661777

RESUMO

Purpose: Treatment resistance is the main cause of adverse disease outcome in breast cancer patients. Here, we aimed to investigate common features in tamoxifen-resistant and radioresistant breast cancer, as tamoxifen-resistant breast cancer cells are cross-resistant to irradiation in vitroExperimental Design: RNA sequencing of tamoxifen-resistant and radioresistant breast cancer cells was performed and validated by quantitative PCR. Pathways were further investigated in vitro and in breast cancer patient cohorts to establish their relation with treatment resistance.Results: Both tamoxifen-resistant and radioresistant breast cancer cells had increased expression levels of genes involved in type I IFN signaling compared with nonresistant cells. IFN-stimulated genes (ISG) were induced in a dose-dependent and time-dependent manner after tamoxifen treatment and irradiation. Tamoxifen treatment also led to ssDNA presence in the cytoplasm, which is known to induce expression of ISGs, a phenomenon that has already been described for irradiation. Moreover, in a breast cancer patient cohort, high expression levels of ISGs were found in the primary tumor in around half of the patients. This was associated with a tumor-infiltrating lymphocyte (TIL) expression signature, although the ISGs were also expressed by the tumor cells themselves. Importantly, the expression of ISGs correlated with outcome in breast cancer patients treated with adjuvant tamoxifen or radiotherapy, but not in systemically untreated patients or chemotherapy-treated patients.Conclusions: Our data indicate that expression of ISGs by tumor cells is involved in acquired, treatment-induced resistance to tamoxifen and radiotherapy, and might play a role in intrinsic resistance via interaction with TILs. Clin Cancer Res; 24(14); 3397-408. ©2018 AACR.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Interferons/metabolismo , Tolerância a Radiação/genética , Tamoxifeno/farmacologia , Biomarcadores , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , DNA de Cadeia Simples , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferons/farmacologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/efeitos da radiação , Prognóstico , Transcriptoma , Resultado do Tratamento
15.
Adv Exp Med Biol ; 899: 1-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27325258

RESUMO

Phospho-H2AX or γ-H2AX- is a marker of DNA double-stranded breaks and can therefore be used to monitor DNA repair after, for example, irradiation. In addition, positive staining for phospho-H2AX may indicate genomic instability and telomere dysfunction in tumour cells and tissues. Here, we provide a protocol to perform immunostaining for phospho-H2AX on cells, cryosections and formalin-fixed, paraffin-embedded tissues. Crucial steps in the protocol and troubleshooting suggestions are indicated. We also provide suggestions on how to combine staining against γ-H2AX with stainings against components of the tumour microenvironment, such as hypoxia and blood vessels.


Assuntos
Dano ao DNA , Instabilidade Genômica , Histonas/metabolismo , Neoplasias/genética , Coloração e Rotulagem/métodos , Biomarcadores/metabolismo , Crioultramicrotomia , Humanos , Inclusão em Parafina , Fosforilação , Fixação de Tecidos
16.
Semin Cancer Biol ; 35: 62-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26343578

RESUMO

The tumour microenvironment contributes greatly to the response of tumour cells. It consists of chemical gradients, for example of oxygen and nutrients. However, a physical environment is also present. Apart from chemical input, cells also receive physical signals. Tumours display unique mechanical properties: they are a lot stiffer than normal tissue. This may be either a cause or a consequence of cancer, but literature suggests it has a major impact on tumour cells as will be described in this review. The mechanical microenvironment may cause malignant transformation, possibly through activation of oncogenic pathways and inhibition of tumour suppressor genes. In addition, the mechanical microenvironment may promote tumour progression by influencing processes such as epithelial-to-mesenchymal transition, enhancing cell survival through autophagy, but also affects sensitivity of tumour cells to therapeutics. Furthermore, multiple intracellular signalling pathways prove sensitive to the mechanical properties of the microenvironment. It appears the increased stiffness is unlikely to be caused by increased stiffness of the tumour cells themselves. However, there are indications that tumours display a higher cell density, making them more rigid. In addition, increased matrix deposition in the tumour, as well as increased interstitial fluid pressure may account for the increased stiffness of tumours. Overall, tumour mechanics are significantly different from normal tissue. Therefore, this feature should be further explored for use in cancer prevention, detection and treatment.


Assuntos
Fenômenos Mecânicos , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Animais , Comunicação Celular , Transformação Celular Neoplásica , Progressão da Doença , Matriz Extracelular/metabolismo , Humanos , Neoplasias/etiologia , Neoplasias/mortalidade , Neoplasias/terapia , Transdução de Sinais , Resultado do Tratamento
17.
Biomark Med ; 9(4): 383-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25808442

RESUMO

AIM: Here, we set out to establish whether endogenous γ-H2AX is a biomarker in triple-negative breast cancer. METHODS: We explored the association of γ-H2AX with mutation status and sensitivity to 139 different anticancer drugs in up to 41 breast cancer cell lines. Further, we correlated γ-H2AX expression in breast cancer tumor tissues with telomere length. RESULTS: γ-H2AX positive breast cancer cells exhibit more mutations, and - when p53 mutated - have shorter telomeres. In breast cancer patients γ-H2AX is also related to shorter telomeres, which was in turn associated with poorer prognosis of triple-negative breast cancer patients. CONCLUSION: Thus, endogenous γ-H2AX is associated with short telomeres, which might offer a specific target for therapy for triple-negative breast cancer patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Telômero/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína BRCA1/genética , Linhagem Celular Tumoral , Humanos , Mutação , Prognóstico , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
18.
Head Neck ; 37(6): 896-905, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24634103

RESUMO

BACKGROUND: The purpose of this study was to examine the hypoxic regulation of the PKR-like endoplasmic reticulum kinase (PERK)/activating transcription factor-4 (ATF4)/lysosome-associated membrane protein 3 (LAMP3)-arm of the unfolded protein response (UPR) in head and neck squamous cell carcinoma (HNSCC). METHODS: LAMP3 expression was determined in patient biopsies by immunohistochemistry and correlated to clinicopathological parameters. mRNA and protein expression for PERK, ATF4, and LAMP3 was evaluated after hypoxic exposure of HNSCC cell lines. RESULTS: In patients with HNSCC, high LAMP3 expression correlated with N classification (p = .019) and the occurrence of distant metastases during follow-up (p = .039). Patients with high LAMP3 levels had a worse metastasis-free survival (p = .008). Intriguingly, LAMP3 expression was localized exclusively in normoxic areas of tumors and xenografts. Expression of PERK, p-PERK, p-eIF2α, ATF4, and LAMP3 was not universally induced in hypoxic HNSCC cell lines. Exposure to endoplasmic reticulum-stress stimulated PERK, ATF4, and LAMP3 expression. CONCLUSION: LAMP3 is relevant for prognosis in HNSCC. However, the PERK/ATF4/LAMP3-arm of the UPR responds differently to hypoxia in HNSCC compared to other tumor types.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Neoplasias/metabolismo , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Carcinoma de Células Escamosas/mortalidade , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Estudos de Coortes , Feminino , Neoplasias de Cabeça e Pescoço/mortalidade , Xenoenxertos , Humanos , Imuno-Histoquímica , Proteínas de Membrana Lisossomal/genética , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase/métodos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Taxa de Sobrevida , eIF-2 Quinase/genética
19.
Semin Cancer Biol ; 31: 89-98, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24879905

RESUMO

Autophagy is a process in which cells can generate energy and building materials, by degradation of redundant and/or damaged organelles and proteins. Especially during conditions of stress, autophagy helps to maintain homeostasis. In addition, autophagy has been shown to influence malignant transformation and cancer progression. The precise molecular events in autophagy are complex and the core autophagic machinery described to date consists of nearly thirty proteins. Apart from these factors that execute the process of autophagy, several signalling pathways are involved in converting internal and external stimuli into an autophagic response. In this review we provide an overview of the signalling pathways that influence autophagy, particularly in cancer cells. We will illustrate that interference with multiple of these signalling pathways can have significant effects on cancer cell survival.


Assuntos
Autofagia/fisiologia , Homeostase/fisiologia , Neoplasias/fisiopatologia , Transdução de Sinais/fisiologia , Humanos , Modelos Biológicos , Neoplasias/patologia , Resposta a Proteínas não Dobradas/fisiologia
20.
Semin Cancer Biol ; 31: 99-105, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24933034

RESUMO

Autophagy, the catabolic pathway in which cells recycle organelles and other parts of their own cytoplasm, is increasingly recognised as an important cytoprotective mechanism in cancer cells. Several cancer treatments stimulate the autophagic process and when autophagy is inhibited, cancer cells show an enhanced response to multiple treatments. These findings have nourished the theory that autophagy provides cancer cells with a survival advantage during stressful conditions, including exposure to therapeutics. Therefore, interference with the autophagic response can potentially enhance the efficacy of cancer therapy. In this review we examine two approaches to modulate autophagy as complementary cancer treatment: inhibition and induction. Inhibition of autophagy during cancer treatment eliminates its cytoprotective effects. Conversely, induction of autophagy combined with conventional cancer therapy exerts severe cytoplasmic degradation that can ultimately lead to cell death. We will discuss how autophagy can be therapeutically manipulated in cancer cells and how interactions between the conventional cancer therapies and autophagy modulation influence treatment outcome.


Assuntos
Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/fisiologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/fisiologia , Humanos , Modelos Biológicos , Neoplasias/patologia , Neoplasias/fisiopatologia , Transdução de Sinais/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA