Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782728

RESUMO

The homeostasis of heart and other organs relies on the appropriate provision of nutrients and functional specialization of the local vasculature. Here, we have used mouse genetics, imaging and cell biology approaches to investigate how homeostasis in the adult heart is controlled by endothelial EphB4 and its ligand ephrin-B2, which are known regulators of vascular morphogenesis and arteriovenous differentiation during development. We show that inducible and endothelial cell-specific inactivation of Ephb4 in adult mice is compatible with survival, but leads to rupturing of cardiac capillaries, cardiomyocyte hypertrophy, and pathological cardiac remodeling. In contrast, EphB4 is not required for integrity and homeostasis of capillaries in skeletal muscle. Our analysis of mutant mice and cultured endothelial cells shows that EphB4 controls the function of caveolae, cell-cell adhesion under mechanical stress and lipid transport. We propose that EphB4 maintains critical functional properties of the adult cardiac vasculature and thereby prevents dilated cardiomyopathy-like defects.


Assuntos
Endotélio Vascular/crescimento & desenvolvimento , Efrina-B2/genética , Coração/crescimento & desenvolvimento , Receptor EphB4/genética , Adulto , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Homeostase/genética , Humanos , Ligantes , Camundongos , Morfogênese/genética , Músculo Esquelético/crescimento & desenvolvimento , Neovascularização Fisiológica/genética
2.
Sci Rep ; 9(1): 597, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679680

RESUMO

We investigated the physiological functions of Myo10 (myosin X) using Myo10 reporter knockout (Myo10tm2) mice. Full-length (motorized) Myo10 protein was deleted, but the brain-specific headless (Hdl) isoform (Hdl-Myo10) was still expressed in homozygous mutants. In vitro, we confirmed that Hdl-Myo10 does not induce filopodia, but it strongly localized to the plasma membrane independent of the MyTH4-FERM domain. Filopodia-inducing Myo10 is implicated in axon guidance and mice lacking the Myo10 cargo protein DCC (deleted in colorectal cancer) have severe commissural defects, whereas MRI (magnetic resonance imaging) of isolated brains revealed intact commissures in Myo10tm2/tm2 mice. However, reminiscent of Waardenburg syndrome, a neural crest disorder, Myo10tm2/tm2 mice exhibited pigmentation defects (white belly spots) and simple syndactyly with high penetrance (>95%), and 24% of mutant embryos developed exencephalus, a neural tube closure defect. Furthermore, Myo10tm2/tm2 mice consistently displayed bilateral persistence of the hyaloid vasculature, revealed by MRI and retinal whole-mount preparations. In principle, impaired tissue clearance could contribute to persistence of hyaloid vasculature and syndactyly. However, Myo10-deficient macrophages exhibited no defects in the phagocytosis of apoptotic or IgG-opsonized cells. RNA sequence analysis showed that Myo10 was the most strongly expressed unconventional myosin in retinal vascular endothelial cells and expression levels increased 4-fold between P6 and P15, when vertical sprouting angiogenesis gives rise to deeper layers. Nevertheless, imaging of isolated adult mutant retinas did not reveal vascularization defects. In summary, Myo10 is important for both prenatal (neural tube closure and digit formation) and postnatal development (hyaloid regression, but not retinal vascularization).


Assuntos
Encéfalo/metabolismo , Miosinas/genética , Animais , Encéfalo/diagnóstico por imagem , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Genótipo , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Miosinas/química , Miosinas/metabolismo , Fagocitose , Fenótipo , Isoformas de Proteínas/metabolismo , Pseudópodes/metabolismo , Pele/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA