Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Curr Med Chem ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38847253

RESUMO

Cancer therapy has seen significant advancements in recent years, with the emergence of RNA interference (RNAi) as a promising strategy for targeted gene silencing. However, the successful delivery of small interfering RNA (siRNA) to cancer cells remains a challenge. Chitosan nanoparticles (CSNPs) can be derived from the natural polysaccharide chitin sources. CSNPs have gained considerable attention as a potential solution to encapsulate siRNA due to their biocompatibility, and biodegradability. This article explores the application of CSNPs for siRNA delivery in cancer therapy. Firstly, it discusses the significance of siRNA in gene regulation and highlights its potential to selectively silence oncogenes or tumor suppressor genes, making it a powerful tool in cancer treatment. The obstacles associated with effective siRNA delivery, such as degradation by nucleases and poor cellular uptake, are also addressed. Next, the focus shifts to the unique properties of CSNPs that make them attractive for siRNA delivery. The discussion revolves around how chitosan can interact electrostatically with siRNA to create stable complexes, as well as the controlled release of siRNA from CSNPs. This controlled release ensures sustained and efficient delivery of siRNA to cancer cells, maximizing therapeutic efficacy. Moreover, the biocompatibility and biodegradability of CSNPs make them ideal for in vivo applications. Different approaches to modifying and functionalizing surfaces are investigated by emphasizing on enhancement of stability and targeting abilities of CSNPs in cancer treatment. Registered trials for CS and siRNA are summarized, along with ongoing investigations into various applications of chitosan in medical treatments. Overall, the application of CSNPs in siRNA delivery for cancer therapy holds great promise and offers a potential solution to overcome the challenges associated with RNAi-based treatments. Continued advancements in this field will likely lead to improved targeted therapies with reduced side effects, ultimately benefitting cancer patients worldwide.

2.
Curr Top Med Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38752630

RESUMO

Chitosan-based nanoparticles have emerged as a promising tool in the realm of cancer therapy, particularly for gene delivery. With cancer being a prevalent and devastating disease, finding effective treatment options is of utmost importance. These nanoparticles provide a unique solution by encapsulating specific genes and delivering them directly to cancer cells, offering immense potential for targeted therapy. The biocompatibility and biodegradability of chitosan, a naturally derived polymer, make it an ideal candidate for this purpose. The nanoparticles protect the genetic material during transportation and enhance its cellular uptake, ensuring effective delivery to the site of action. Furthermore, the unique properties of chitosan-based nanoparticles allow for the controlled release of genes, maximizing their therapeutic effect while minimizing adverse effects. By advancing the field of gene therapy through the use of chitosan-based nanoparticles, scientists are making significant strides toward more humane and personalized treatments for cancer patients.

3.
Curr Gene Ther ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38778601

RESUMO

Lung cancer is a significant cause of cancer-related death worldwide. It can be broadly categorised into small-cell lung cancer (SCLC) and Non-small cell lung cancer (NSCLC). Surgical intervention, radiation therapy, and the administration of chemotherapeutic medications are among the current treatment modalities. However, the application of chemotherapy may be limited in more advanced stages of metastasis due to the potential for adverse effects and a lack of cell selectivity. Although small-molecule anticancer treatments have demonstrated effectiveness, they still face several challenges. The challenges at hand in this context comprise insufficient solubility in water, limited bioavailability at specific sites, adverse effects, and the requirement for epidermal growth factor receptor inhibitors that are genetically tailored. Bio-macromolecular drugs, including small interfering RNA (siRNA) and messenger RNA (mRNA), are susceptible to degradation when exposed to the bodily fluids of humans, which can reduce stability and concentration. In this context, nanoscale delivery technologies are utilised. These agents offer encouraging prospects for the preservation and regulation of pharmaceutical substances, in addition to improving the solubility and stability of medications. Nanocarrier-based systems possess the notable advantage of facilitating accurate and sustained drug release, as opposed to traditional systemic methodologies. The primary focus of scientific investigation has been to augment the therapeutic efficacy of nanoparticles composed of lipids. Numerous nanoscale drug delivery techniques have been implemented to treat various respiratory ailments, such as lung cancer. These technologies have exhibited the potential to mitigate the limitations associated with conventional therapy. As an illustration, applying nanocarriers may enhance the solubility of small-molecule anticancer drugs and prevent the degradation of bio-macromolecular drugs. Furthermore, these devices can administer medications in a controlled and extended fashion, thereby augmenting the therapeutic intervention's effectiveness and reducing adverse reactions. However, despite these promising results, challenges remain that must be addressed. Multiple factors necessitate consideration when contemplating the application of nanoparticles in medical interventions. To begin with, the advancement of more efficient delivery methods is imperative. In addition, a comprehensive investigation into the potential toxicity of nanoparticles is required. Finally, additional research is needed to comprehend these treatments' enduring ramifications. Despite these challenges, the field of nanomedicine demonstrates considerable promise in enhancing the therapy of lung cancer and other respiratory diseases.

4.
Sci Rep ; 14(1): 11928, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789508

RESUMO

Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components-such as aptamers, antibodies, or nucleic acids-with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102-106 cells mL-1, with a detection limit of 5 cells mL-1.


Assuntos
Compostos de Anilina , Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Técnicas Eletroquímicas , Polímeros de Fluorcarboneto , Grafite , Receptor ErbB-2 , Grafite/química , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Técnicas Eletroquímicas/métodos , Compostos de Anilina/química , Polímeros de Fluorcarboneto/química , Linhagem Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análise , Feminino , Óxido Ferroso-Férrico/química , Limite de Detecção , Eletrodos
5.
Curr Med Chem ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38726787

RESUMO

Improvements in cancer treatment are largely influenced by more people knowing about it and developing new ways to diagnose and treat it. New methods such as nanotheranostics and the use of tiny particles have greatly improved the diagnosis, control and treatment of cancer. They have also helped overcome problems with traditional treatments. Nanotheranostics contribute to personalized medicine by helping doctors choose the right treatment, track how well the treatment works, and plan future treatments. Polymers have many advantages as smart or durable drug formulations among small therapeutic platforms. These small sacks, which can be used for drug delivery and imaging, are not harmful to natural tissues and are becoming more popular. Scientists have found a special group of tiny particles made of polymers that can carry active ingredients. These particles show the potential of creating a useful platform for the diagnosis and treatment of diseases on a very small scale. In the past ten years, people have become more interested in polymersomes. They have been used for various medical purposes, such as controlling blood sugar, treating cancer and fighting bacteria. Polymers are stronger and more stable than liposomes. Biocompatible and biodegradable polymers are very important for faster translation and creation of useful medical formulations. Recent progress in this field includes the creation of intelligent, centralized and responsive containers. In this review, we will examine and provide information about polymersomes. We will discuss their properties and how they can be used as drug delivery systems.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38644717

RESUMO

Quantum dots (QDs) have attracted considerable interest due to their potential applications and economic viability in various industrial sectors, such as communications, displays, and solar cells. This fascination originates from the quantum size effect-induced remarkable optical properties exhibited by QDs. In recent years, significant progress has been made in producing QDs devoid of cadmium, known to be toxic to cells and living organisms. These QDs have generated considerable interest in bioimaging due to their potential for targeting molecules and cells. There is a developing need for diagnostics and therapy at the individual molecule and single-cell level in the medical field. As a result, the application of QDs in the medical industry is gaining momentum. This study provides an overview of the most recent developments in applying QDs for diagnostic and therapeutic purposes, also known as theranostics. It emphasizes specifically the use of QDs in cancer therapy.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38644713

RESUMO

Researchers in various fields continue to discover improved ways of local delivery of drugs to specific locations and try to increase the efficiency of these methods. Extensive research has been done on smart nano-biomaterials for drug delivery systems (DDS) in different dimensions. With the advancement of biomedical nanotechnology, conventional smart DDS with stimuli- responsive capability has been developed. Smart nano-biomaterials can respond to environmental changes caused by endogenous or exogenous elements: endogenous factors such as environmental pH, temperature gradient, enzymes, oxidation, and reduction potential. As well as exogenous factors, including light radiation, ultrasound, electric and magnetic fields. Currently, smart DDSs count as a major category in DDS and disease treatment. Currently, smart DDS are of great interest in drug delivery and treatment of diseases. With the improvements in gene and protein therapy, new methods have been presented to treat diseases without effective conventional treatment, especially cancer. Finally, the use of nanoparticles expanded due to the need for appropriate gene and protein delivery systems. This review discusses the advantages of protein and gene therapy, their challenges, and gene and protein delivery systems with nanoparticle-based delivery.

8.
Int J Biol Macromol ; 268(Pt 1): 131694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642693

RESUMO

In the last ten years, the field of nanomedicine has experienced significant progress in creating novel drug delivery systems (DDSs). An effective strategy involves employing DNA nanoparticles (NPs) as carriers to encapsulate drugs, genes, or proteins, facilitating regulated drug release. This abstract examines the utilization of DNA NPs and their potential applications in strategies for controlled drug release. Researchers have utilized the distinctive characteristics of DNA molecules, including their ability to self-assemble and their compatibility with living organisms, to create NPs specifically for the purpose of delivering drugs. The DNA NPs possess numerous benefits compared to conventional drug carriers, such as exceptional stability, adjustable dimensions and structure, and convenient customization. Researchers have successfully achieved a highly efficient encapsulation of different therapeutic agents by carefully designing their structure and composition. This advancement enables precise and targeted delivery of drugs. The incorporation of drugs, genes, or proteins into DNA NPs provides notable advantages in terms of augmenting therapeutic effectiveness while reducing adverse effects. DNA NPs serve as a protective barrier for the enclosed payloads, preventing their degradation and extending their duration in the body. The protective effect is especially vital for delicate biologics, such as proteins or gene-based therapies that could otherwise be vulnerable to enzymatic degradation or quick elimination. Moreover, the surface of DNA NPs can be altered to facilitate specific targeting towards particular tissues or cells, thereby augmenting the accuracy of delivery. A significant benefit of DNA NPs is their capacity to regulate the kinetics of drug release. Through the manipulation of the DNA NPs structure, scientists can regulate the rate at which the enclosed cargo is released, enabling a prolonged and regulated dispensation of medication. This control is crucial for medications with limited therapeutic ranges or those necessitating uninterrupted administration to attain optimal therapeutic results. In addition, DNA NPs have the ability to react to external factors, including alterations in temperature, pH, or light, which can initiate the release of the payload at precise locations or moments. This feature enhances the precision of drug release control. The potential uses of DNA NPs in the controlled release of medicines are extensive. The NPs have the ability to transport various therapeutic substances, for example, drugs, peptides, NAs (NAs), and proteins. They exhibit potential for the therapeutic management of diverse ailments, including cancer, genetic disorders, and infectious diseases. In addition, DNA NPs can be employed for targeted drug delivery, traversing biological barriers, and surpassing the constraints of conventional drug administration methods.


Assuntos
DNA , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Nanopartículas , Proteínas , DNA/química , Nanopartículas/química , Humanos , Proteínas/química , Portadores de Fármacos/química , Animais , Sistemas de Liberação de Medicamentos , Nanomedicina/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38529608

RESUMO

Breast cancer is a highly prevalent disease on a global scale, with a 30% incidence rate among women and a 14% mortality rate. Developing countries bear a disproportionate share of the disease burden, while countries with greater technological advancements exhibit a higher incidence. A mere 7% of women under the age of 40 are diagnosed with breast cancer, and the prevalence of this ailment is significantly diminished among those aged 35 and younger. Chemotherapy, radiation therapy, and surgical intervention comprise the treatment protocol. However, the ongoing quest for a definitive cure for breast cancer continues. The propensity for cancer stem cells to metastasize and resistance to treatment constitute their Achilles' heel. The advancement of drug delivery techniques that target cancer cells specifically holds significant promise in terms of facilitating timely detection and effective intervention. Novel approaches to pharmaceutical delivery, including nanostructures and liposomes, may bring about substantial changes in the way breast cancer is managed. These systems offer a multitude of advantages, such as heightened bioavailability, enhanced solubility, targeted tumor destruction, and diminished adverse effects. The application of nano-drug delivery systems to administer anti-breast cancer medications is a significant subject of research. This article delves into the domain of breast cancer, conventional treatment methods, the incorporation of nanotechnology into managerial tactics, and strategic approaches aimed at tackling the disease at its core.

10.
Crit Rev Clin Lab Sci ; : 1-23, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450458

RESUMO

Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.

11.
Curr Top Med Chem ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38424436

RESUMO

Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38275060

RESUMO

Recent advances in science and technology have led to revolutions in many different scientific and industrial fields. The term lab on a chip, or in other word, performing a variety of complex analyzes in just a short time and in a very small space, is a term that has become very common in recent years, and what used to be a dream has now come to life in practice. In this paper, we has been tried to investigate a specific type of lab technology on a chip, which is of course one of the most common, namely the knowledge and technology of cell separation by using microfluidic technique that can be separated based on size and deformation, adhesion and electrical properties. The tissue of the human body is degraded due to injury or aging, which is often tried to treat this tissue disorder by using drugs, but they are not always enough. Stem cell-based medicine is a novel form of medicine which promises the restoration or regeneration of tissues and functioning organs. Although many models of microfluidic systems have been designed for cell separation, the choice of appropriate device to achieve a reliable result is presented as a challenge. So, in this study, Fluorescence Activated Cell Sorting (FACS), Dielectrophoresis (DEP), Magnetic Activated Cell Sorting (MACS) and Acoustic microfluidic system are four distinct categories of active microfluidic systems explored. Also, the advantages, disadvantages and the current status of the mentioned devices in these methods, are reviewed.

13.
Biochimie ; 220: 122-143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176605

RESUMO

Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.


Assuntos
Separação Celular , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Separação Celular/métodos , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Animais
14.
Sci Rep ; 13(1): 21980, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082024

RESUMO

Breast cancer detection at an early stage significantly increases the chances of successful treatment and survival. This study presents an electrochemical biosensor for detecting breast cancer cells, utilizing silver nanoclusters encapsulated by hemoglobin and Cu (II)-porphyrin-metal organic framework (BioMOF) in a graphene-incorporated nanohybrid probe. This Hb-AgNCs@MOF-G probe demonstrates high electrochemical activity, superior dispersity, porosity, and a large surface area for effective functionalization. Using a green ultrasonic-assisted stirring method, we fabricate ultra-small 5 nm particles that readily immobilize on a glassy carbon electrode, generating a detection signal when interacting with ferricyanide/ferrocyanide redox probes. The resulting immunosensor detects as few as 2 cells/mL using Electrochemical Impedance Spectroscopy (EIS) "signal on" and 16 cells/mL via Square Wave Voltammetry (SWV) "signal off", within a broad range of cell concentrations (102-5 × 104 cells/mL). Our designed sensor shows improved selectivity (5- to 16-fold) and robust detection in human blood with a recovery efficiency between 94.8-106% (EIS method) and 95.4-111% (SWV method). This sensor could streamline early cancer diagnosis and monitor patient treatment without requiring labelling or signal amplification. As a pioneering endeavor, we've utilized integrated porous MOFs with Hb-encapsulated silver nanoclusters in cancer detection, where these components collectively enhance the overall functionality.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Grafite , Nanopartículas Metálicas , Humanos , Feminino , Grafite/química , Técnicas Biossensoriais/métodos , Prata/química , Técnicas Eletroquímicas/métodos , Imunoensaio , Hemoglobinas , Neoplasias da Mama/diagnóstico , Nanopartículas Metálicas/química , Limite de Detecção
15.
Curr Pharm Des ; 29(44): 3546-3562, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115614

RESUMO

Nanogels are three-dimensional networks at the nanoscale level that can be fabricated through physical or chemical processes using polymers. These nanoparticles' biocompatibility, notable stability, efficacious drug-loading capacity, and ligand-binding proficiency make them highly suitable for employment as drug-delivery vehicles. In addition, they exhibit the ability to react to both endogenous and exogenous stimuli, which may include factors such as temperature, illumination, pH levels, and a diverse range of other factors. This facilitates the consistent administration of the drug to the intended site. Alginate biopolymers have been utilized to encapsulate anticancer drugs due to their biocompatible nature, hydrophilic properties, and cost-effectiveness. The efficacy of alginate nano gel-based systems in cancer treatment has been demonstrated through multiple studies that endorse their progress toward clinical implementation. This paper comprehensively reviews alginate and its associated systems in drug delivery systems.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Nanogéis/química , Nanogéis/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Nanopartículas/química , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico
16.
Biosensors (Basel) ; 13(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37185556

RESUMO

Breast cancer (BC), one of the most common and life-threatening cancers, has the highest incidence rate among women. Early diagnosis of BC oncomarkers is considered the most effective strategy for detecting and treating BC. Finding the type and stage of BC in women as soon as possible is one of the greatest ways to stop its incidence and negative effects on medical treatment. The development of biosensors for early, sensitive, and selective detection of oncomarkers has recently attracted much attention. An electrochemical nano biosensor (EN) is a very suitable option for a powerful tool for cancer diagnosis. This comprehensive review provides information about the prevalence and pathobiology of BC, recent advances in clinically available BC oncomarkers, and the most common electrochemical nano biosensors for point-of-care (POC) detection of various BC oncomarkers using nanomaterial-based signal amplification techniques.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Sistemas Automatizados de Assistência Junto ao Leito
17.
Front Mol Biosci ; 10: 1071376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091862

RESUMO

Cu-BTC framework has received a considerable attention in recent years as a drug carrier candidate for cancer treatment due to its unique structural properties and promising biocompatibility. However, its intrinsic deficiency for medical imaging potentially limits its bioapplications; To address this subject, a magnetic nano/microscale MOF has been successfully fabricated by introducing Fe3O4 nanoparticles as an imaging agent into the porous isoreticular MOF [Cu3(BTC)2] as a drug carrier. The synthesized magnetic MOFs exhibits a high loading capacity (40.5%) toward the model anticancer DOX with an excellent pH-responsive drug release. The proposed nanocomposite not only possesses large surface area, high magnetic response, large mesopore volume, high transverse relaxivity (r 2) and good stability but also exhibits superior biocompatibility, specific tumor cellular uptake, and significant cancer cell viability inhibitory effect without any targeting agent. It is expected that the synthesized magnetic nano/microcomposite may be used for clinical purposes and can also serve as a platform for photoactive antibacterial therapy ae well as pH/GSH/photo-triple-responsive nanocarrier.

18.
Front Bioeng Biotechnol ; 11: 1104126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911200

RESUMO

Hydrogels are widely used biomaterials in the delivery of therapeutic agents, including drugs, genes, proteins, etc., as well as tissue engineering, due to obvious properties such as biocompatibility and their similarity to natural body tissues. Some of these substances have the feature of injectability, which means that the substance is injected into the desired place in the solution state and then turns into the gel, which makes it possible to administer them from a way with a minimal amount of invasion and eliminate the need for surgery to implant pre-formed materials. Gelation can be caused by a stimulus and/or spontaneously. Suppose this induces due to the effect of one or many stimuli. In that case, the material in question is called stimuli-responsive because it responds to the surrounding conditions. In this context, we introduce the different stimuli that cause gelation and investigate the different mechanisms of the transformation of the solution into the gel in them. Also, we study special structures, such as nano gels or nanocomposite gels.

19.
Front Mol Biosci ; 9: 1043277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325275

RESUMO

This research conducted a comparative study on nanoscaled niosomal structures consisting of Tween-80, Tween-60, cholesterol, and dioleoyl-3-trimethylammonium propane (DOTAP). Thin-film hydration technique was used for the preparation and entrapment of curcumin and miRNA in niosomal formulations for enhancing the stability and delivery rate of the agents. Herein, the influence of Tween-80, Tween-60, cholesterol, and DOTAP on the entrapment efficiency (EE%) of curcumin and the physicochemical properties of the carrier are fully discussed. The optimum engineered formulation resulted in a positive charge of +11.23 mV, high EE (100%), smooth surface, spherical shape, small diameter (90 nm), and good stability in physiological buffers. Also, an accelerated cellular uptake, as well as drug release in PBS (pH 7.4, 37°C) after 72 h, were observed. The cytotoxic activity of curcumin (Cur)/miR-34a-loaded nanoparticles was determined by the MTT assay. The results displayed an improved cytotoxic activity of Cur-niosome towards cancer cells compared to free-dispersed Cur. The uptake of Cur-loaded niosome by A280s and A280cp-1 cancer cell lines faced 2.5 folds drop in the concentration compared to its free form. Generally, Cur-niosome exhibits a significant accumulation of superior anti-cancer properties. Likewise, the cytotoxicity of miR-34a-niosome against tumor cells was higher in comparison with its free form. The anti-cancer effects of the gene/drug delivery were investigated in the 4T1 xenografted Balb/C mouse tumor model. According to the in vitro and in vivo results, gene delivery from the modified niosome nanoparticles was distinctly greater than Cur delivery. Therefore, it was concluded that encapsulation of genes in the nano-niosomal delivery system is a promising procedure for the treatment of cancer cells.

20.
Front Bioeng Biotechnol ; 10: 1036224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406228

RESUMO

Screen-printed electrodes (SPEs) are promising candidates for fabricating biosensing platforms in the laboratory and industry due to the various advantages they involve. The primary method for fabricating SPEs is 2D printing. However, commercial SPEs have some limitations due to the specific ports and connections they require, inflexible design, high prices, and decreased efficiency after a short time. This article introduces high performance, feasible, and cost-effective gold SPEs based on the combination of printed circuit board substrate (PCBs) and sputtering methods for electrochemical biosensing platforms. First, we discuss a general gold SPE development procedure that helps researchers to develop specific designs. The final developed version of SPEs was characterized in the second step, showing positive performance in electrochemical parameters because of the optimization of design and fabrication steps. In the study's final phase, SPEs were used to fabricate a simple platform for breast cancer cell detection as a proof of concept without using any linker or labeling step. The designed immunosensor is very simple and cost-effective, showing a linear calibration curve in the range of 10 - 2× 102 cells mL-1 (R 2 = 0.985, S/N = 3). This research can be used as a reference for future studies in SPEs-based biosensors because of the flexibility of its design and the accessibility of the manufacturing equipment required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA