Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012031, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427950

RESUMO

The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.


Assuntos
Candida albicans , Candidíase , Humanos , Zinco , Células Epiteliais , Intestinos
2.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388771

RESUMO

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Assuntos
Proteínas Fúngicas , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Micotoxinas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
3.
EMBO Rep ; 24(11): e57571, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795769

RESUMO

The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.


Assuntos
Candida albicans , Armadilhas Extracelulares , Candida albicans/metabolismo , Armadilhas Extracelulares/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo
4.
J Biol Chem ; 298(10): 102419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037968

RESUMO

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Assuntos
Candida albicans , Candidíase Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidade , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Candidíase Bucal/metabolismo , Candidíase Bucal/microbiologia , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia
5.
Methods Mol Biol ; 2542: 163-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008664

RESUMO

In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.


Assuntos
Proteínas Fúngicas , Micotoxinas , Candida albicans/metabolismo , Dicroísmo Circular , Proteínas Fúngicas/metabolismo , Humanos , Micotoxinas/metabolismo , Peptídeos/metabolismo , Virulência
6.
Sci Signal ; 15(728): eabj6915, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380879

RESUMO

The fungal pathogen Candida albicans secretes the peptide toxin candidalysin, which damages epithelial cells and drives an innate inflammatory response mediated by the epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (MAPK) pathways and the transcription factor c-Fos. In cultured oral epithelial cells, candidalysin activated the MAPK p38, which resulted in heat shock protein 27 (Hsp27) activation, IL-6 release, and EGFR phosphorylation without affecting the induction of c-Fos. p38 activation was not triggered by EGFR but by two nonredundant pathways involving MAPK kinases (MKKs) and the kinase Src, which differentially controlled p38 signaling outputs. Whereas MKKs mainly promoted p38-dependent release of IL-6, Src promoted p38-mediated phosphorylation of EGFR in a ligand-independent fashion. In parallel, candidalysin also activated the EGFR-ERK pathway in a ligand-dependent manner, resulting in c-Fos activation and release of the neutrophil-activating chemokines G-CSF and GM-CSF. In mice, early clearance events of oral C. albicans infection required p38 but not c-Fos. These findings delineate how candidalysin activates the pathways downstream of the MAPKs p38 and ERK that differentially contribute to immune activation during C. albicans infection.


Assuntos
Candida albicans , Proteínas Fúngicas , Sistema de Sinalização das MAP Quinases , Animais , Candida albicans/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Camundongos , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Cell Rep ; 38(1): 110187, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986345

RESUMO

Candida albicans is both a commensal and an opportunistic fungal pathogen. Invading hyphae of C. albicans secrete candidalysin, a pore-forming peptide toxin. To prevent cell death, epithelial cells must protect themselves from direct damage induced by candidalysin and by the mechanical forces exerted by expanding hyphae. We identify two key Ca2+-dependent repair mechanisms employed by epithelial cells to withstand candidalysin-producing hyphae. Using camelid nanobodies, we demonstrate candidalysin secretion directly into the invasion pockets induced by elongating C. albicans hyphae. The toxin induces oscillatory increases in cytosolic [Ca2+], which cause hydrolysis of PtdIns(4,5)P2 and loss of cortical actin. Epithelial cells dispose of damaged membrane regions containing candidalysin by an Alg-2/Alix/ESCRT-III-dependent blebbing process. At later stages, plasmalemmal tears induced mechanically by invading hyphae are repaired by exocytic insertion of lysosomal membranes. These two repair mechanisms maintain epithelial integrity and prevent mucosal damage during both commensal growth and infection by C. albicans.


Assuntos
Candida albicans/metabolismo , Candidíase/patologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Lisossomos/metabolismo , Mucosa/fisiologia , Animais , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/fisiologia , Células Epiteliais/metabolismo , Exocitose/fisiologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Humanos , Hifas/crescimento & desenvolvimento , Camundongos , Mucosa/citologia , Mucosa/microbiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células RAW 264.7
8.
mBio ; 13(1): e0351021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073742

RESUMO

Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.


Assuntos
Micotoxinas , Humanos , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Candida tropicalis , Peptídeos/metabolismo , Citocinas/metabolismo
9.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506615

RESUMO

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Assuntos
Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alelos , Animais , Candida albicans/patogenicidade , Feminino , Variação Genética , Humanos , Camundongos , Virulência
10.
Cell Microbiol ; 23(10): e13378, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245079

RESUMO

The human pathogenic fungus Candida albicans is a frequent cause of mucosal infections. Although the ability to transition from the yeast to the hypha morphology is essential for virulence, hypha formation and host cell invasion per se are not sufficient for the induction of epithelial damage. Rather, the hypha-associated peptide toxin, candidalysin, a product of the Ece1 polyprotein, is the critical damaging factor. While synthetic, exogenously added candidalysin is sufficient to damage epithelial cells, the level of damage does not reach the same level as invading C. albicans hyphae. Therefore, we hypothesized that a combination of fungal attributes is required to deliver candidalysin to the invasion pocket to enable the full damaging potential of C. albicans during infection. Utilising a panel of C. albicans mutants with known virulence defects, we demonstrate that the full damage potential of C. albicans requires the coordinated delivery of candidalysin to the invasion pocket. This process requires appropriate epithelial adhesion, hyphal extension and invasion, high levels of ECE1 transcription, proper Ece1 processing and secretion of candidalysin. To confirm candidalysin delivery, we generated camelid VH Hs (nanobodies) specific for candidalysin and demonstrate localization and accumulation of the toxin only in C. albicans-induced invasion pockets. In summary, a defined combination of virulence attributes and cellular processes is critical for delivering candidalysin to the invasion pocket to enable the full damage potential of C. albicans during mucosal infection. TAKE AWAYS: Candidalysin is a peptide toxin secreted by C. albicans causing epithelial damage. Candidalysin delivery to host cell membranes requires specific fungal attributes. Candidalysin accumulates in invasion pockets created by invasive hyphae. Camelid nanobodies enabled visualisation of candidalysin in the invasion pocket.


Assuntos
Candida albicans , Proteínas Fúngicas , Proteínas Fúngicas/genética , Humanos , Hifas , Virulência
11.
Cell Microbiol ; 23(10): e13371, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34085369

RESUMO

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Assuntos
Candidíase , Proteínas Fúngicas , Candida albicans , Células Epiteliais , Humanos , Necrose
12.
J Infect Dis ; 224(7): 1219-1224, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33733279

RESUMO

Immunocompromised patients are highly susceptible to invasive aspergillosis. Herein, we identified a homozygous deletion mutation (507 del C) resulting in a frameshift (N170I) and early stop codon in the fungal binding Dectin-2 receptor, in an immunocompromised patient. The mutated form of Dectin-2 was weakly expressed, did not form clusters at/near the cell surface and was functionally defective. Peripheral blood mononuclear cells from this patient were unable to mount a cytokine (tumor necrosis factor, interleukin 6) response to Aspergillus fumigatus, and this first identified Dectin-2-deficient patient died of complications of invasive aspergillosis.


Assuntos
Aspergilose/diagnóstico , Aspergillus fumigatus/isolamento & purificação , Infecções Fúngicas Invasivas , Lectinas Tipo C/genética , Deleção de Sequência/genética , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Evolução Fatal , Interações Hospedeiro-Patógeno , Humanos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/diagnóstico , Infecções Fúngicas Invasivas/tratamento farmacológico
13.
Methods Mol Biol ; 2260: 49-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33405031

RESUMO

The epithelial cell is usually the first host cell that interacts with the microbiota present at mucosal surfaces. Although initially thought of as "bystander" cells with barrier function, the epithelial cell is now known to be a sentinel cell in the recognition and discrimination of commensal and pathogenic microorganisms and a key cell in initiating subsequent innate and adaptive immune responses. Here, we describe the main assays utilized in analyzing the activation of epithelial cell signaling (western blotting), transcription factors (TransAm), gene expression (quantitative reverse transcription PCR (qRT-PCR)), cytokine responses (ELISA, Luminex), and damage induction (lactate dehydrogenase (LDH) release). While our laboratory focuses on the epithelial response to Candida pathogens, these assays can be applied universally to analyze the activation of epithelial cells in response to any microbial pathogen.


Assuntos
Western Blotting , Candida/patogenicidade , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Animais , Sobrevivência Celular , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , L-Lactato Desidrogenase/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
14.
Immunology ; 162(1): 11-16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880925

RESUMO

As our understanding of mycology progresses, the impact of fungal microbes on human health has become increasingly evident. Candida albicans is a common commensal fungus that gives rise to local and systemic infections, particularly in immunocompromised patients where it can result in mortality. However, C. albicans has also been quietly linked with a variety of inflammatory disorders, to which it has traditionally been considered incidental; recent studies may now provide new aspects of these relationships for further consideration. This review provides a novel perspective on the impact of C. albicans and its peptide toxin, candidalysin, on human health, exploring their contributions to pathology within a variety of diseases.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Inflamação/microbiologia , Neoplasias/microbiologia , Animais , Candidíase/microbiologia , Humanos
15.
mBio ; 13(1): e0314421, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089096

RESUMO

Oral squamous cell carcinoma (OSCC) is associated with oral Candida albicans infection, although it is unclear whether the fungus promotes the genesis and progression of OSCC or whether cancer facilitates fungal growth. In this study, we investigated whether C. albicans can potentiate OSCC tumor development and progression. In vitro, the presence of live C. albicans, but not Candida parapsilosis, enhanced the progression of OSCC by stimulating the production of matrix metalloproteinases, oncometabolites, protumor signaling pathways, and overexpression of prognostic marker genes associated with metastatic events. C. albicans also upregulated oncogenes in nonmalignant cells. Using a newly established xenograft in vivo mouse model to investigate OSCC-C. albicans interactions, oral candidiasis enhanced the progression of OSCC through inflammation and induced the overexpression of metastatic genes and significant changes in markers of the epithelial-mesenchymal transition. Finally, using the 4-nitroquinoline 1-oxide (4NQO) murine model, we directly correlate these in vitro and short-term in vivo findings with the progression of oncogenesis over the long term. Taken together, these data indicate that C. albicans upregulates oncogenes, potentiates a premalignant phenotype, and is involved in early and late stages of malignant promotion and progression of oral cancer. IMPORTANCE Oral squamous cell carcinoma (OSCC) is a serious health issue worldwide that accounts for 2% to 4% of all cancer cases. Previous studies have revealed a higher yeast carriage and diversity in oral cancer patients than in healthy individuals. Furthermore, fungal colonization in the oral cavity bearing OSCC is higher on the neoplastic epithelial surface than on adjacent healthy surfaces, indicating a positive association between oral yeast carriage and epithelial carcinoma. In addition to this, there is strong evidence supporting the idea that Candida contributes to carcinogenesis events in the oral cavity. Here, we show that an increase in Candida albicans burden promotes an oncogenic phenotype in the oral cavity.


Assuntos
Candidíase Bucal , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Camundongos , Animais , Candida albicans/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinogênese/genética
16.
Oral Dis ; 26 Suppl 1: 69-79, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32862519

RESUMO

A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September -15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?


Assuntos
Infecções por HIV , Imunidade Inata , Mucosa Bucal , Linfócitos T CD4-Positivos , Infecções por HIV/imunologia , Humanos , Imunidade nas Mucosas , Lactente , Mucosa Bucal/imunologia , Mucosa Bucal/virologia
17.
Sci Immunol ; 5(48)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503875

RESUMO

Oropharyngeal candidiasis (OPC; thrush) is an opportunistic infection caused by the commensal fungus Candida albicans Interleukin-17 (IL-17) and IL-22 are cytokines produced by type 17 lymphocytes. Both cytokines mediate antifungal immunity yet activate quite distinct downstream signaling pathways. While much is now understood about how IL-17 promotes immunity in OPC, the activities of IL-22 are far less well delineated. We show that, despite having similar requirements for induction from type 17 cells, IL-22 and IL-17 function nonredundantly during OPC. We find that the IL-22 and IL-17 receptors are required in anatomically distinct locations within the oral mucosa; loss of IL-22RA1 or signal transducer and activator of transcription 3 (STAT3) in the oral basal epithelial layer (BEL) causes susceptibility to OPC, whereas IL-17RA is needed in the suprabasal epithelial layer (SEL). Transcriptional profiling of the tongue linked IL-22/STAT3 not only to oral epithelial cell proliferation and survival but also, unexpectedly, to driving an IL-17-specific gene signature. We show that IL-22 mediates regenerative signals on the BEL that replenish the IL-17RA-expressing SEL, thereby restoring the ability of the oral epithelium to respond to IL-17 and thus to mediate antifungal events. Consequently, IL-22 signaling in BEL "licenses" IL-17 signaling in the oral mucosa, revealing spatially distinct yet cooperative activities of IL-22 and IL-17 in oral candidiasis.


Assuntos
Candidíase Bucal/imunologia , Células Epiteliais/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Mucosa Bucal/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Candida albicans/imunologia , Feminino , Interleucina-17/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Interleucina 22
18.
Cells ; 9(3)2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178483

RESUMO

Host released alarmins and antimicrobial peptides (AMPs) are highly effective as antifungal agents and inducers. Whilst some are expressed constitutively at mucosal tissues, the primary site of many infections, others are elicited in response to pathogens. In the context of Candida albicans, the fungal factors inducing the release of these innate immune molecules are poorly defined. Herein, we identify candidalysin as a potent trigger of several key alarmins and AMPs known to possess potent anti-Candida functions. We also find extracellular ATP to be an important activator of candidalysin-induced epithelial signalling responses, namely epidermal growth factor receptor (EGFR) and MAPK signalling, which mediate downstream innate immunity during oral epithelial infection. The data provide novel mechanistic insight into the induction of multiple key alarmins and AMPs, important for antifungal defences against C. albicans.


Assuntos
Alarminas/metabolismo , Candida albicans/imunologia , Células Epiteliais/metabolismo , Proteínas Fúngicas/uso terapêutico , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Fúngicas/farmacologia , Humanos
19.
Nat Commun ; 10(1): 2297, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127085

RESUMO

Candida albicans is a fungal pathobiont, able to cause epithelial cell damage and immune activation. These functions have been attributed to its secreted toxin, candidalysin, though the molecular mechanisms are poorly understood. Here, we identify epidermal growth factor receptor (EGFR) as a critical component of candidalysin-triggered immune responses. We find that both C. albicans and candidalysin activate human epithelial EGFR receptors and candidalysin-deficient fungal mutants poorly induce EGFR phosphorylation during murine oropharyngeal candidiasis. Furthermore, inhibition of EGFR impairs candidalysin-triggered MAPK signalling and release of neutrophil activating chemokines in vitro, and diminishes neutrophil recruitment, causing significant mortality in an EGFR-inhibited zebrafish swimbladder model of infection. Investigation into the mechanism of EGFR activation revealed the requirement of matrix metalloproteinases (MMPs), EGFR ligands and calcium. We thus identify a PAMP-independent mechanism of immune stimulation and highlight candidalysin and EGFR signalling components as potential targets for prophylactic and therapeutic intervention of mucosal candidiasis.


Assuntos
Candida albicans/imunologia , Proteínas Fúngicas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Sacos Aéreos/microbiologia , Animais , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/imunologia , Metaloproteinases da Matriz/imunologia , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Mucosa/microbiologia , Faringite/imunologia , Faringite/microbiologia , Fosforilação , Peixe-Zebra
20.
Nat Immunol ; 20(5): 559-570, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30996332

RESUMO

The C-type lectin receptor-Syk (spleen tyrosine kinase) adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human deficiency in CARD9 causes susceptibility to fungus-specific, CNS-targeted infection. CARD9 promotes the recruitment of neutrophils to the fungus-infected CNS, which mediates fungal clearance. In the present study we investigated host and pathogen factors that promote protective neutrophil recruitment during invasion of the CNS by Candida albicans. The cytokine IL-1ß served an essential function in CNS antifungal immunity by driving production of the chemokine CXCL1, which recruited neutrophils expressing the chemokine receptor CXCR2. Neutrophil-recruiting production of IL-1ß and CXCL1 was induced in microglia by the fungus-secreted toxin Candidalysin, in a manner dependent on the kinase p38 and the transcription factor c-Fos. Notably, microglia relied on CARD9 for production of IL-1ß, via both transcriptional regulation of Il1b and inflammasome activation, and of CXCL1 in the fungus-infected CNS. Microglia-specific Card9 deletion impaired the production of IL-1ß and CXCL1 and neutrophil recruitment, and increased fungal proliferation in the CNS. Thus, an intricate network of host-pathogen interactions promotes antifungal immunity in the CNS; this is impaired in human deficiency in CARD9, which leads to fungal disease of the CNS.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/imunologia , Candidíase/imunologia , Quimiocina CXCL1/imunologia , Interleucina-1beta/imunologia , Microglia/imunologia , Neutrófilos/imunologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/genética , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Microglia/metabolismo , Microglia/microbiologia , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA