Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892166

RESUMO

Pertuzumab (Perjeta®), a humanized antibody binding to the dimerization arm of HER2 (Human epidermal growth factor receptor-2), has failed as a monotherapy agent in HER2 overexpressing malignancies. Since the molecular interaction of HER2 with ligand-bound EGFR (epidermal growth factor receptor) has been implied in mitogenic signaling and malignant proliferation, we hypothesized that this interaction, rather than HER2 expression and oligomerization alone, could be a potential molecular target and predictor of the efficacy of pertuzumab treatment. Therefore, we investigated static and dynamic interactions between HER2 and EGFR molecules upon EGF stimulus in the presence and absence of pertuzumab in HER2+ EGFR+ SK-BR-3 breast tumor cells using Förster resonance energy transfer (FRET) microscopy and fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS). The consequential activation of signaling and changes in cell proliferation were measured by Western blotting and MTT assay. The autocorrelation functions of HER2 diffusion were best fitted by a three-component model corrected for triplet formation, and among these components the slowly diffusing membrane component revealed aggregation induced by EGFR ligand binding, as evidenced by photon-counting histograms and co-diffusing fractions. This aggregation has efficiently been prevented by pertuzumab treatment, which also inhibited the post-stimulus interaction of EGFR and HER2, as monitored by changes in FRET efficiency. Overall, the data demonstrated that pertuzumab, by hindering post-stimulus interaction between EGFR and HER2, inhibits EGFR-evoked HER2 aggregation and phosphorylation and leads to a dose-dependent decrease in cell proliferation, particularly when higher amounts of EGF are present. Consequently, we propose that EGFR expression on HER2-positive tumors could be taken into consideration as a potential biomarker when predicting the outcome of pertuzumab treatment.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Proliferação de Células , Receptores ErbB , Receptor ErbB-2 , Transdução de Sinais , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Receptores ErbB/metabolismo , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Feminino , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Transferência Ressonante de Energia de Fluorescência , Ativação Transcricional/efeitos dos fármacos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico
2.
PLoS Pathog ; 20(2): e1011996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386622

RESUMO

Vacuolar pathogens reside in membrane-bound compartments within host cells. Maintaining the integrity of this compartment is paramount to bacterial survival and replication as it protects against certain host surveillance mechanisms that function to eradicate invading pathogens. Preserving this compartment during bacterial replication requires expansion of the vacuole membrane to accommodate the increasing number of bacteria, and yet, how this is accomplished remains largely unknown. Here, we show that the vacuolar pathogen Legionella pneumophila exploits multiple sources of host cell fatty acids, including inducing host cell fatty acid scavenging pathways, in order to promote expansion of the replication vacuole and bacteria growth. Conversely, when exogenous lipids are limited, the decrease in host lipid availability restricts expansion of the replication vacuole membrane, resulting in a higher density of bacteria within the vacuole. Modifying the architecture of the vacuole prioritizes bacterial growth by allowing the greatest number of bacteria to remain protected by the vacuole membrane despite limited resources for its expansion. However, this trade-off is not without risk, as it can lead to vacuole destabilization, which is detrimental to the pathogen. However, when host lipid resources become extremely scarce, for example by inhibiting host lipid scavenging, de novo biosynthetic pathways, and/or diverting host fatty acids to storage compartments, bacterial replication becomes severely impaired, indicating that host cell fatty acid availability also directly regulates L. pneumophila growth. Collectively, these data demonstrate dual roles for host cell fatty acids in replication vacuole expansion and bacterial proliferation, revealing the central functions for these molecules and their metabolic pathways in L. pneumophila pathogenesis.


Assuntos
Legionella pneumophila , Legionella pneumophila/metabolismo , Vacúolos/metabolismo , Macrófagos/microbiologia , Ácidos Graxos/metabolismo , Lipídeos
3.
Nucleic Acids Res ; 52(8): 4234-4256, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348998

RESUMO

Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters-including that of Csf1r-are composed exclusively of 'distal' elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.


Assuntos
Linhagem da Célula , Regulação da Expressão Gênica , Macrófagos , Regiões Promotoras Genéticas , Fatores de Transcrição , Animais , Camundongos , Metilação de DNA , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
4.
Autophagy ; 20(1): 188-201, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589496

RESUMO

Macroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades. We previously provided an integrated database for autophagy research, the Autophagy Regulatory Network (ARN). For the last eight years, this resource has been used by thousands of users. Here, we present a new and upgraded resource, AutophagyNet. It builds on the previous database but contains major improvements to address user feedback and novel needs due to the advancement in omics data availability. AutophagyNet contains updated interaction curation and integration of over 280,000 experimentally verified interactions between core autophagy proteins and their protein, transcriptional and post-transcriptional regulators as well as their potential upstream pathway connections. AutophagyNet provides annotations for each core protein about their role: 1) in different types of autophagy (mitophagy, xenophagy, etc.); 2) in distinct stages of autophagy (initiation, expansion, termination, etc.); 3) with subcellular and tissue-specific localization. These annotations can be used to filter the dataset, providing customizable download options tailored to the user's needs. The resource is available in various file formats (e.g. CSV, BioPAX and PSI-MI), and data can be analyzed and visualized directly in Cytoscape. The multi-layered regulation of autophagy can be analyzed by combining AutophagyNet with tissue- or cell type-specific (multi-)omics datasets (e.g. transcriptomic or proteomic data). The resource is publicly accessible at http://autophagynet.org.Abbreviations: ARN: Autophagy Regulatory Network; ATG: autophagy related; BCR: B cell receptor pathway; BECN1: beclin 1; GABARAP: GABA type A receptor-associated protein; IIP: innate immune pathway; LIR: LC3-interacting region; lncRNA: long non-coding RNA; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; NHR: nuclear hormone receptor; PTM: post-translational modification; RTK: receptor tyrosine kinase; TCR: T cell receptor; TLR: toll like receptor.


Assuntos
Autofagia , MicroRNAs , Autofagia/fisiologia , Proteômica , Proteína Beclina-1 , Mitofagia , Transdução de Sinais/genética
5.
Cardiol J ; 30(6): 1010-1017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37853823

RESUMO

BACKGROUND: A direct comparison of three-dimensional transesophageal echocardiography (3DTEE) and cardiac computed tomography imaging has demonstrated good inter-technique agreement for the following pulmonary vein (PV) parameters: the ostium area of the right superior PV (RSPV) and its major (a) and minor axis (b) diameters, the left lateral ridge and the minor axis (b) diameter of the left superior PV. Herein, under investigation, was the predictive value of these parameters for arrhythmia recurrence (AR) after PV isolation with the 28 mm second generation cryoballoon (CBG2). METHODS: One hundred eleven patients (67 men, mean age 58.06 ± 10.58 years) undergoing 3DTEE before PV isolation with the CBG2 for paroxysmal atrial fibrillation were followed. "Point by point" redo intervention was offered in case of AR and reconnected PVs were defined. RESULTS: During a mean follow-up of 617 ± 258.86 days, 65 (58.9%) patients remained free of AR. Longer RSPV b was found to be the only significant predictor for AR (hazard ratio [HR] 1.059; 95% confidence interval [CI] 1.000-1.121; p = 0.048). RSPV b ≥ 28 mm resulted in a threefold (HR 3.010; 95% CI 1.270-7.134, p = 0.012) increase in the risk of AR. The association of RSPV b with AR was independent of the biophysical parameters of cryoapplications. In 25 "redo" patients, reconnections were found 1.75 times more likely in the RSPV than in the other 3 PVs altogether. CONCLUSIONS: Right superior PV b measured with 3DTEE might be a significant predictor of AR after PV isolation with the CBG2. In case of RSPV b exceeding 28 mm, alternative PV isolation techniques or use of a larger balloon might be considered.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Criocirurgia , Veias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia , Resultado do Tratamento , Ecocardiografia Transesofagiana , Criocirurgia/efeitos adversos , Criocirurgia/métodos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Ablação por Cateter/métodos
6.
Front Immunol ; 14: 1168635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215144

RESUMO

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Assuntos
Interleucina-4 , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Interleucina-4/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Mol Ther Methods Clin Dev ; 29: 145-159, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37025950

RESUMO

DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the piggyBac and Sleeping Beauty systems-the only DNA transposons currently employed in clinical trials-during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of piggyBac integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of Sleeping Beauty-generated integrations is closer to random. We also revealed that the piggyBac transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window.

8.
Cardiovasc Ultrasound ; 21(1): 6, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076858

RESUMO

BACKGROUND: Anatomical characteristics of the left atrium and the pulmonary veins (PVs) may be relevant to the success rate of cryoballoon (CB)-ablation for atrial fibrillation (AF). Cardiac computed tomography (CCT) is considered as the gold standard for preablation imaging. Recently, three-dimensional transesophageal echocardiography (3DTOE) has been proposed for preprocedural assessment of cardiac structures relevant to CB-ablation. The accuracy of 3DTOE has not been validated by other imaging modalities. OBJECTIVE: We prospectively evaluated the feasibility and the accuracy of 3DTOE imaging for the assessment of left atrial and PV structures prior to pulmonary vein isolation (PVI). In addition, CCT was used to validate the measurements obtained with 3DTOE. METHODS: PV anatomy of 67 patients (59.7% men, mean age 58.5 ± 10.5 years) was assessed using both 3DTOE and CCT scan prior to PVI with the Arctic Front CB. The following parameters were measured bilaterally: PV ostium area (OA), the major and minor axis diameters of the ostium (a > b) and the width of the carina between the superior and the inferior PVs. In addition, the width of the left lateral ridge (LLR) between the left atrial appendage and the left superior PV. Evaluation of inter-technique agreement was based on linear regression with Pearson correlation coefficient (PCC) and Bland-Altman analysis of biases and limits of agreement. RESULTS: Moderate positive correlation (PCC 0.5-0.7) was demonstrated between the two imaging methods for the right superior PV's OA and both axis diameters, the width of the LLR and left superior PV (LSPV) minor axis diameter (b) with limits of agreement ˂50% and no significant biases. Low positive or negligible correlation (PCC < 0.5) was found for both inferior PV parameters. CONCLUSIONS: Detailed assessment of the right superior PV parameters, LLR and LSPV b is feasible with 3DTOE prior to AF ablation. This 3DTOE measurements demonstrated a clinically acceptable inter-technique agreement with those obtained with CCT.


Assuntos
Fibrilação Atrial , Criocirurgia , Veias Pulmonares , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Ecocardiografia Transesofagiana/métodos , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia , Criocirurgia/métodos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
9.
Immunol Rev ; 317(1): 152-165, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074820

RESUMO

Our laboratory has a long-standing research interest in understanding how lipid-activated transcription factors, nuclear hormone receptors, contribute to dendritic cell and macrophage gene expression regulation, subtype specification, and responses to a changing extra and intracellular milieu. This journey in the last more than two decades took us from identifying target genes for various RXR heterodimers to systematically mapping nuclear receptor-mediated pathways in dendritic cells to identifying hierarchies of transcription factors in alternative polarization in macrophages to broaden the role of nuclear receptors beyond strictly ligand-regulated gene expression. We detail here the milestones of the road traveled and draw conclusions regarding the unexpectedly broad role of nuclear hormone receptors as epigenomic components of dendritic cell and macrophage gene regulation as we are getting ready for the next challenges.


Assuntos
Epigenômica , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Fatores de Transcrição
10.
Immunity ; 55(11): 2006-2026.e6, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323312

RESUMO

Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.


Assuntos
Interleucina-4 , Lipopolissacarídeos , Camundongos , Animais , Interleucina-4/metabolismo , Lipopolissacarídeos/metabolismo , Ligantes , Epigenômica , Macrófagos/metabolismo , Receptores Toll-Like/metabolismo , Epigênese Genética , NF-kappa B/metabolismo
11.
Fungal Biol ; 126(9): 556-565, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36008048

RESUMO

The protection of vulnerable developing structures evolved repeatedly in terrestrial organisms and includes, among others, viviparity in animals and the seed in land plants. In mushroom-forming fungi (Agaricomycetes), sexual spores are born on fruiting bodies, the growth of which is a complex developmental process that is exposed to environmental factors (e.g., desiccation, fungivorous animals). Mushroom-forming fungi evolved a series of innovations in fruiting body protection, however, how these emerged is obscure, leaving the evolutionary principles of fruiting body development poorly known. Here, we show that developmental innovations that lead to the spore-producing surface (hymenophore) being enclosed in a protected environment display asymmetry in their evolution and are associated with increased diversification rates. 'Enclosed' development evolved convergently and became a dominant developmental type in several clades of mushrooms. This probably mirrors spore production benefits for species with protected fruiting body initials, by better coping with environmental factors. Our observations highlight new morphological traits associated with mushroom diversification that parallel the evolution of protection strategies in other organisms, such as viviparity or the seed in animals or plants, respectively, but in the context of spore development, highlighting the general importance of protecting vulnerable progeny across the tree of life.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Carpóforos
12.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133983

RESUMO

BACKGROUNDPathophysiology of type 1 diabetes (T1D) is illustrated by pancreatic islet infiltration of inflammatory lymphocytes, including CD8+ T cells; however, the molecular factors mediating their recruitment remain unknown. We hypothesized that single-cell RNA-sequencing (scRNA-Seq) analysis of immune cell populations isolated from islets of NOD mice captured gene expression dynamics providing critical insight into autoimmune diabetes pathogenesis.METHODSPancreatic sections from human donors were investigated, including individuals with T1D, autoantibody-positive (aAb+) individuals, and individuals without diabetes who served as controls. IHC was performed to assess islet hormones and both novel and canonical immune cell markers that were identified from unbiased, state-of-the-art workflows after reanalyzing murine scRNA-Seq data sets.RESULTSComputational workflows identified cell adhesion molecule 1-mediated (Cadm1-mediated) homotypic binding among the most important intercellular interactions among all cell clusters, as well as Cadm1 enrichment in macrophages and DCs from pancreata of NOD mice. Immunostaining of human pancreata revealed an increased number of CADM1+glucagon+ cells adjacent to CD8+ T cells in sections from T1D and aAb+ donors compared with individuals without diabetes. Numbers of CADM1+CD68+ peri-islet myeloid cells adjacent to CD8+ T cells were also increased in pancreatic sections from both T1D and aAb+ donors compared with individuals without diabetes.CONCLUSIONIncreased detection of CADM1+ cells adjacent to CD8+ T cells in pancreatic sections of individuals with T1D and those who were aAb+ validated workflows and indicated CADM1-mediated intercellular contact may facilitate islet infiltration of cytotoxic T lymphocytes and serve as a potential therapeutic target for preventing T1D pathogenesis.FUNDINGThe Johns Hopkins All Children's Foundation Institutional Research Grant Program, the National Natural Science Foundation of China (grant 82071326), and the Deutsche Forschungsgemeinschaft (grants 431549029-SFB1451, EXC2030-390661388, and 411422114-GRK2550).


Assuntos
Molécula 1 de Adesão Celular , Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Animais , Molécula 1 de Adesão Celular/metabolismo , Comunicação Celular , Células Secretoras de Glucagon/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD
13.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846534

RESUMO

Muscle regeneration is the result of the concerted action of multiple cell types driven by the temporarily controlled phenotype switches of infiltrating monocyte-derived macrophages. Pro-inflammatory macrophages transition into a phenotype that drives tissue repair through the production of effectors such as growth factors. This orchestrated sequence of regenerative inflammatory events, which we termed regeneration-promoting program (RPP), is essential for proper repair. However, it is not well understood how specialized repair-macrophage identity develops in the RPP at the transcriptional level and how induced macrophage-derived factors coordinate tissue repair. Gene expression kinetics-based clustering of blood circulating Ly6Chigh, infiltrating inflammatory Ly6Chigh, and reparative Ly6Clow macrophages, isolated from injured muscle, identified the TGF-ß superfamily member, GDF-15, as a component of the RPP. Myeloid GDF-15 is required for proper muscle regeneration following acute sterile injury, as revealed by gain- and loss-of-function studies. Mechanistically, GDF-15 acts both on proliferating myoblasts and on muscle-infiltrating myeloid cells. Epigenomic analyses of upstream regulators of Gdf15 expression identified that it is under the control of nuclear receptors RXR/PPARγ. Finally, immune single-cell RNA-seq profiling revealed that Gdf15 is coexpressed with other known muscle regeneration-associated growth factors, and their expression is limited to a unique subpopulation of repair-type macrophages (growth factor-expressing macrophages [GFEMs]).


Assuntos
Perfilação da Expressão Gênica/métodos , Fator 15 de Diferenciação de Crescimento/genética , Inflamação/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Macrófagos/metabolismo , Regeneração/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Fator 15 de Diferenciação de Crescimento/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Musculares/metabolismo , Músculos/lesões , Músculos/metabolismo , Músculos/fisiopatologia , Células Mieloides/metabolismo , RNA-Seq/métodos
14.
J Neurosci Rural Pract ; 12(4): 689-693, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34737503

RESUMO

Objective Epidural hematoma (EDH), most often caused by rupture of the middle meningeal artery secondary to head trauma with fracture of the temporal bone, is a potentially fatal condition that can lead to elevated intracranial pressure, herniation, and death within hours following the inciting traumatic incident, unless surgical evacuation is accomplished. Several markers have been found to be associated with hematoma expansion in intracerebral hemorrhage (ICH) patients, including: the CT Blend Sign, Swirl Sign, and Black Hole Sign. This study aims to examine these markers, along with intradural air close to or in the region of an EDH and/or close to a significant fracture, fractures involving the skull base, and complicated (i.e., comminuted or displaced) fractures for possible associations to EDH growth in the pediatric population. Predicting hematoma growth is a crucial part of patient management, as surgery can be a life-saving intervention. Methods Scans from all pediatric patients with EDH from 2012 to 2019 across two separate health systems were examined and measurements were taken to determine whether these additional factors are of predictive value. Specifications such as length, transverse, and height measurements were taken from CT images. Statistical Analysis The average percent change in the hematoma measurements was used to determine which predictive factors were associated with a "noteworthy increase," namely, an increase of greater than 25%. Additionally, the average percent change in hematoma size was evaluated for patients whose original imaging showed either all three CT signs or intradural air in all three specified locations. Results Most of the proposed markers were associated with EDH growth in this cohort. The established CT signs were also supported. This is notable, as most of the research on these signs has been in adult populations rather than pediatric. Conclusions Adding these novel imaging signs could aid in the decision to operate on versus observe PEDH patients, thereby preventing unnecessary procedures or preserving brain function quickly when surgery is indicated. This study serves as a starting point for several other investigations into the validity of the proposed markers as well as a reevaluation of the current signs in the pediatric population.

15.
J Neurosci Rural Pract ; 12(4): 804-806, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34737521

RESUMO

Choroid plexectomy is a debated surgical intervention for the treatment of hydranencephaly and chronic infected hydrocephalus. We present a case of a 2-year-old with multiple shunt revisions and hydrocephalus secondary to a pilocytic astrocytoma. He presented with new somnolence, vomiting, and abdominal distension 5 months post subtotal tumor resection, with a history of shunt revisions and infections related to his chemotherapy-induced low white blood cell count. He underwent choroid plexus coagulation and resection. Three years post choroid plexectomy, the patient continues to meet neurodevelopmental milestones and is shunt independent. While ventricular shunt placement is the most common course of treatment, choroid plexectomy should be considered as an alternative treatment of hydrocephalus secondary to other neurological disorders, especially when the patient is immunocompromised, to avoid the recurrent infections seen with shunt placement.

16.
FEBS Open Bio ; 11(12): 3218-3229, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34358410

RESUMO

The changing extra- and intracellular microenvironment calls for rapid cell fate decisions that are precisely and primarily regulated at the transcriptional level. The cellular components of the immune system are excellent examples of how cells respond and adapt to different environmental stimuli. Innate immune cells such as macrophages are able to modulate their transcriptional programs and epigenetic regulatory networks through activation and repression of particular genes, allowing them to quickly respond to a rapidly changing environment. Tissue macrophages are essential components of different immune- and nonimmune cell-mediated physiological mechanisms in mammals and are widely used models for investigating transcriptional regulatory mechanisms. Therefore, it is critical to unravel the distinct sets of transcription activators, repressors, and coregulators that play roles in determining tissue macrophage identity and functions during homeostasis, as well as in diseases affecting large human populations, such as metabolic syndromes, immune-deficiencies, and tumor development. In this review, we will focus on transcriptional repressors that play roles in tissue macrophage development and function under physiological conditions.


Assuntos
Macrófagos/imunologia , Especificidade de Órgãos/imunologia , Transcrição Gênica/genética , Animais , Diferenciação Celular/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Mucosa Intestinal/imunologia , Macrófagos/fisiologia , Macrófagos Alveolares/imunologia , Microglia/imunologia , Baço/imunologia , Fatores de Transcrição/metabolismo
17.
Antioxid Redox Signal ; 35(12): 917-950, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34269613

RESUMO

Aim: The aim of our study was to explore the pathophysiologic role of oxidation of hemoglobin (Hb) to ferrylHb in human atherosclerosis. Results: We observed a severe oxidation of Hb to ferrylHb in complicated atherosclerotic lesions of carotid arteries with oxidative changes of the globin moieties, detected previously described oxidation hotspots in Hb (ß1Cys93; ß1Cys112; ß2Cys112) and identified a novel oxidation hotspot (α1Cys104). After producing a monoclonal anti-ferrylHb antibody, ferrylHb was revealed to be localized extracellularly and also internalized by macrophages in the human hemorrhagic complicated lesions. We demonstrated that ferrylHb is taken up via phagocytosis as well as CD163 receptor-mediated endocytosis and then transported to lysosomes involving actin polymerization. Internalization of ferrylHb was accompanied by upregulation of heme oxygenase-1 and H-ferritin and accumulation of iron within lysosomes as a result of heme/iron uptake. Importantly, macrophages exposed to ferrylHb in atherosclerotic plaques exhibited a proinflammatory phenotype, as reflected by elevated levels of IL-1ß and TNF-α. To find further signatures of ferrylHb in complicated lesions, we performed RNA-seq analysis on biopsies from patients who underwent endarterectomies. RNA-seq analysis demonstrated that human complicated lesions had a unique transcriptomic profile different from arteries and atheromatous plaques. Pathways affected in complicated lesions included gene changes associated with phosphoinositide 3-kinase (PI3K) signaling, lipid transport, tissue remodeling, and vascularization. Targeted analysis of gene expression associated with calcification, apoptosis, and hemolytic-specific clusters indicated an increase in the severity of complicated lesions compared with atheroma. A 39% overlap in the differential gene expression profiles of human macrophages exposed to ferrylHb and the complicated lesion profiles was uncovered. Among these 547 genes, we found inflammatory, angiogenesis, and iron metabolism gene clusters regulated in macrophages. Innovation and Conclusion: We conclude that oxidation of Hb to ferrylHb contributes to the progression of atherosclerosis via polarizing macrophages into a proatherogenic phenotype. Antioxid. Redox Signal. 35, 917-950.


Assuntos
Aterosclerose/metabolismo , Hemoglobinas/metabolismo , Macrófagos/metabolismo , Humanos , Oxirredução , Fosfatidilinositol 3-Quinases/metabolismo
18.
Sci Rep ; 11(1): 10435, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001932

RESUMO

Hemorrhage and hemolysis with subsequent heme release are implicated in many pathologies. Endothelial cells (ECs) encounter large amount of free heme after hemolysis and are at risk of damage from exogenous heme. Here we show that hemorrhage aggravates endoplasmic reticulum (ER) stress in human carotid artery plaques compared to healthy controls or atheromas without hemorrhage as demonstrated by RNA sequencing and immunohistochemistry. In EC cultures, heme also induces ER stress. In contrast, if cultured ECs are pulsed with heme arginate, cells become resistant to heme-induced ER (HIER) stress that is associated with heme oxygenase-1 (HO-1) and ferritin induction. Knocking down HO-1, HO-2, biliverdin reductase, and ferritin show that HO-1 is the ultimate cytoprotectant in acute HIER stress. Carbon monoxide-releasing molecules (CORMs) but not bilirubin protects cultured ECs from HIER stress via HO-1 induction, at least in part. Knocking down HO-1 aggravates heme-induced cell death that cannot be counterbalanced with any known cell death inhibitors. We conclude that endothelium and perhaps other cell types can be protected from HIER stress by induction of HO-1, and heme-induced cell death occurs via HIER stress that is potentially involved in the pathogenesis of diverse pathologies with hemolysis and hemorrhage including atherosclerosis.


Assuntos
Estenose das Carótidas/complicações , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Hemorragia/patologia , Placa Aterosclerótica/complicações , Biópsia , Estenose das Carótidas/sangue , Linhagem Celular , Estresse do Retículo Endoplasmático , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Hemólise , Hemorragia/etiologia , Humanos , Placa Aterosclerótica/sangue
19.
Environ Microbiol ; 23(10): 5716-5732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33538380

RESUMO

Because they comprise some of the most efficient wood-decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin-like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.


Assuntos
Basidiomycota , Polyporales , Basidiomycota/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Filogenia , Polyporales/genética , Polyporales/metabolismo , Transcriptoma/genética , Madeira/microbiologia
20.
Cell Commun Signal ; 19(1): 7, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441142

RESUMO

The cytokine release syndrome or cytokine storm, which is the hyper-induction of inflammatory responses has a central role in the mortality rate of COVID-19 and some other viral infections. Interleukin-6 (IL-6) is a key player in the development of cytokine storms. Shedding of interleukin-6 receptor (IL-6Rα) results in the accumulation of soluble interleukin-6 receptors (sIL-6R). Only relatively few cells express membrane-bound IL-6Rα. However, sIL-6R can act on potentially all cells and organs through the ubiquitously expressed gp130, the coreceptor of IL-6Rα. Through this, so-called trans-signaling, IL-6-sIL-6R is a powerful factor in the development of cytokine storms and multiorgan involvement. Some bacteria (e.g., Serratia marcescens, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes), commonly considered to cause co-infections during viral pneumonia, can directly induce the shedding of membrane receptors, including IL-6Rα, or enhance endogenous shedding mechanisms causing the increase of sIL-6R level. Here we hypothesise that bacteria promoting shedding and increase the sIL-6R level can be an important contributing factor for the development of cytokine storms. Therefore, inhibition of IL-6Rα shedding by drastically reducing the number of relevant bacteria may be a critical element in reducing the chance of a cytokine storm. Validation of this hypothesis can support the consideration of the prophylactic use of antibiotics more widely and at an earlier stage of infection to decrease the mortality rate of COVID-19. Video abstract.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , COVID-19/patologia , Síndrome da Liberação de Citocina/etiologia , Metaloproteases/metabolismo , COVID-19/complicações , COVID-19/virologia , Síndrome da Liberação de Citocina/microbiologia , Humanos , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , SARS-CoV-2/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA