Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515267

RESUMO

Positive-strand RNA viruses co-opt organellar membranes for biogenesis of viral replication organelles (VROs). Tombusviruses also co-opt pro-viral cytosolic proteins to VROs. It is currently not known what type of molecular organization keeps co-opted proteins sequestered within membranous VROs. In this study, we employed tomato bushy stunt virus (TBSV) and carnation Italian ringspot virus (CIRV) - Nicotiana benthamiana pathosystems to identify biomolecular condensate formation in VROs. We show that TBSV p33 and the CIRV p36 replication proteins sequester glycolytic and fermentation enzymes in unique condensate substructures associated with membranous VROs. We find that p33 and p36 form droplets in vitro driven by intrinsically disordered region. The replication protein organizes partitioning of co-opted host proteins into droplets. VRO-associated condensates are critical for local adenosine triphosphate production to support energy for virus replication. We find that co-opted endoplasmic reticulum membranes and actin filaments form meshworks within and around VRO condensates, contributing to unique composition and structure. We propose that p33/p36 organize liquid-liquid phase separation of co-opted concentrated host proteins in condensate substructures within membranous VROs. Overall, we demonstrate that subverted membranes and condensate substructures co-exist and are critical for VRO functions. The replication proteins induce and connect the two substructures within VROs.

2.
Virology ; 576: 1-17, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126429

RESUMO

Replication of positive-strand RNA viruses depends on usurped cellular membranes and co-opted host proteins. Based on pharmacological inhibition and genetic and biochemical approaches, the authors identified critical roles of the cellular Cdc48 unfoldase/segregase protein in facilitating the replication of tomato bushy stunt virus (TBSV). We show that TBSV infection induces the expression of Cdc48 in Nicotiana benthamiana plants. Cdc48 binds to the TBSV replication proteins through its N-terminal region. In vitro TBSV replicase reconstitution experiments demonstrated that Cdc48 is needed for efficient replicase assembly and activity. Surprisingly, the in vitro replication experiments also showed that excess amount of Cdc48 facilitates the disassembly of the membrane-bound viral replicase-RNA template complex. Cdc48 is also needed for the recruitment of additional host proteins. Because several human viruses, including flaviviruses, utilize Cdc48, also called VCP/p97, for replication, we suggest that Cdc48 might be a common panviral host factor for plant and animal RNA viruses.


Assuntos
Tombusvirus , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana , Tombusvirus/genética , Proteínas do Complexo da Replicase Viral , Replicação Viral/genética , Proteína com Valosina/metabolismo
3.
PLoS Pathog ; 18(6): e1010653, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35767596

RESUMO

Tombusviruses, similar to other (+)RNA viruses, exploit the host cells by co-opting numerous host components and rewiring cellular pathways to build extensive virus-induced replication organelles (VROs) in the cytosol of the infected cells. Most molecular resources are suboptimal in susceptible cells and therefore, tomato bushy stunt virus (TBSV) drives intensive remodeling and subversion of many cellular processes. The authors discovered that the nuclear centromeric CenH3 histone variant (Cse4p in yeast, CENP-A in humans) plays a major role in tombusvirus replication in plants and in the yeast model host. We find that over-expression of CenH3 greatly interferes with tombusvirus replication, whereas mutation or knockdown of CenH3 enhances TBSV replication in yeast and plants. CenH3 binds to the viral RNA and acts as an RNA chaperone. Although these data support a restriction role of CenH3 in tombusvirus replication, we demonstrate that by partially sequestering CenH3 into VROs, TBSV indirectly alters selective gene expression of the host, leading to more abundant protein pool. This in turn helps TBSV to subvert pro-viral host factors into replication. We show this through the example of hypoxia factors, glycolytic and fermentation enzymes, which are exploited more efficiently by tombusviruses to produce abundant ATP locally within the VROs in infected cells. Altogether, we propose that subversion of CenH3/Cse4p from the nucleus into cytosolic VROs facilitates transcriptional changes in the cells, which ultimately leads to more efficient ATP generation in situ within VROs by the co-opted glycolytic enzymes to support the energy requirement of virus replication. In summary, CenH3 plays both pro-viral and restriction functions during tombusvirus replication. This is a surprising novel role for a nuclear histone variant in cytosolic RNA virus replication.


Assuntos
Tombusvirus , Trifosfato de Adenosina/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Organelas , RNA Viral/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana , Tombusvirus/genética , Tombusvirus/metabolismo , Replicação Viral/genética
4.
J Virol ; 95(21): e0107621, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406861

RESUMO

Positive-strand RNA viruses induce the biogenesis of unique membranous organelles called viral replication organelles (VROs), which perform virus replication in infected cells. Tombusviruses have been shown to rewire cellular trafficking and metabolic pathways, remodel host membranes, and recruit multiple host factors to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) usurp Rab7 small GTPase to facilitate building VROs in the surrogate host yeast and in plants. Depletion of Rab7 small GTPase, which is needed for late endosome and retromer biogenesis, strongly inhibits TBSV and CIRV replication in yeast and in planta. The viral p33 replication protein interacts with Rab7 small GTPase, which results in the relocalization of Rab7 into the large VROs. Similar to the depletion of Rab7, the deletion of either MON1 or CCZ1 heterodimeric GEFs (guanine nucleotide exchange factors) of Rab7 inhibited TBSV RNA replication in yeast. This suggests that the activated Rab7 has proviral functions. We show that the proviral function of Rab7 is to facilitate the recruitment of the retromer complex and the endosomal sorting nexin-BAR proteins into VROs. We demonstrate that TBSV p33-driven retargeting of Rab7 into VROs results in the delivery of several retromer cargos with proviral functions. These proteins include lipid enzymes, such as Vps34 PI3K (phosphatidylinositol 3-kinase), PI4Kα-like Stt4 phosphatidylinositol 4-kinase, and Psd2 phosphatidylserine decarboxylase. In summary, based on these and previous findings, we propose that subversion of Rab7 into VROs allows tombusviruses to reroute endocytic and recycling trafficking to support virus replication. IMPORTANCE The replication of positive-strand RNA viruses depends on the biogenesis of viral replication organelles (VROs). However, the formation of membranous VROs is not well understood yet. Using tombusviruses and the model host yeast, we discovered that the endosomal Rab7 small GTPase is critical for the formation of VROs. Interaction between Rab7 and the TBSV p33 replication protein leads to the recruitment of Rab7 into VROs. TBSV-driven usurping of Rab7 has proviral functions through facilitating the delivery of the co-opted retromer complex, sorting nexin-BAR proteins, and lipid enzymes into VROs to create an optimal milieu for virus replication. These results open up the possibility that controlling cellular Rab7 activities in infected cells could be a target for new antiviral strategies.


Assuntos
Nicotiana/virologia , Organelas/virologia , Saccharomyces cerevisiae/virologia , Tombusvirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Proteínas rab de Ligação ao GTP/fisiologia , 1-Fosfatidilinositol 4-Quinase/metabolismo , Endossomos/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Interações entre Hospedeiro e Microrganismos , Organelas/metabolismo , Doenças das Plantas/virologia , Ligação Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Nexinas de Classificação/metabolismo
5.
Virology ; 563: 1-19, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34399236

RESUMO

To further our understanding of the pro-viral roles of the host cytosolic heat shock protein 70 (Hsp70) family, we chose the conserved Arabidopsis thaliana Hsp70-2 and the unique Erd2 (early response to dehydration 2), which contain Hsp70 domains. Based on in vitro studies with purified components, we show that AtHsp70-2 and AtErd2 perform pro-viral functions equivalent to that of the yeast Ssa1 Hsp70. These functions include activation of the tombusvirus RdRp, and stimulation of replicase assembly. Yeast-based complementation studies demonstrate that AtHsp70-2 or AtErd2 are present in the purified tombusvirus replicase. RNA silencing and over-expression studies in Nicotiana benthamiana suggest that both Hsp70-2 and Erd2 are co-opted by tomato bushy stunt virus (TBSV). Moreover, we used allosteric inhibitors of Hsp70s to inhibit replication of TBSV and related plant viruses in plants. Altogether, interfering with the functions of the co-opted Hsp70s could be an effective antiviral approach against tombusviruses in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Benzotiazóis/farmacologia , Regulação da Expressão Gênica de Plantas/imunologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Regulação Viral da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Compostos de Piridínio/farmacologia , RNA Viral/fisiologia , Nicotiana/metabolismo , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
6.
Virology ; 559: 15-29, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799077

RESUMO

Positive-strand RNA viruses build viral replication organelles (VROs) with the help of co-opted host factors. The energy requirement of intensive viral replication processes is less understood. Previous studies on tomato bushy stunt virus (TBSV) showed that tombusviruses hijack two ATP-producing glycolytic enzymes to produce ATP locally within VROs. In this work, we performed a cDNA library screen with Arabidopsis thaliana proteins and the TBSV p33 replication protein. The p33 - plant interactome contained highly conserved glycolytic proteins. We find that the glycolytic Hxk2 hexokinase, Eno2 phosphopyruvate hydratase and Fba1 fructose 1,6-bisphosphate aldolase are critical for TBSV replication in yeast or in a cell-free replicase reconstitution assay. The recruitment of Fba1 is important for the local production of ATP within VROs. Altogether, our data support the model that TBSV recruits and compartmentalizes possibly most members of the glycolytic pathway. This might allow TBSV to avoid competition with the host for ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicólise , Nicotiana/enzimologia , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interações entre Hospedeiro e Microrganismos , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Tombusvirus/metabolismo
7.
PLoS Pathog ; 17(3): e1009423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33725015

RESUMO

Plus-stranded RNA viruses have limited coding capacity and have to co-opt numerous pro-viral host factors to support their replication. Many of the co-opted host factors support the biogenesis of the viral replication compartments and the formation of viral replicase complexes on subverted subcellular membrane surfaces. Tomato bushy stunt virus (TBSV) exploits peroxisomal membranes, whereas the closely-related carnation Italian ringspot virus (CIRV) hijacks the outer membranes of mitochondria. How these organellar membranes can be recruited into pro-viral roles is not completely understood. Here, we show that the highly conserved Fis1 mitochondrial fission protein is co-opted by both TBSV and CIRV via direct interactions with the p33/p36 replication proteins. Deletion of FIS1 in yeast or knockdown of the homologous Fis1 in plants inhibits tombusvirus replication. Instead of the canonical function in mitochondrial fission and peroxisome division, the tethering function of Fis1 is exploited by tombusviruses to facilitate the subversion of membrane contact site (MCS) proteins and peroxisomal/mitochondrial membranes for the biogenesis of the replication compartment. We propose that the dynamic interactions of Fis1 with MCS proteins, such as the ER resident VAP tethering proteins, Sac1 PI4P phosphatase and the cytosolic OSBP-like oxysterol-binding proteins, promote the formation and facilitate the stabilization of virus-induced vMCSs, which enrich sterols within the replication compartment. We show that this novel function of Fis1 is exploited by tombusviruses to build nuclease-insensitive viral replication compartment.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/fisiologia , Replicação Viral/fisiologia , Saccharomyces cerevisiae/virologia , Nicotiana/virologia
8.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33376201

RESUMO

Biogenesis of viral replication organelles (VROs) is critical for replication of positive-strand RNA viruses. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely related carnation Italian ringspot virus (CIRV) hijack the retromer to facilitate building VROs in the surrogate host yeast and in plants. Depletion of retromer proteins, which are needed for biogenesis of endosomal tubular transport carriers, strongly inhibits the peroxisome-associated TBSV and the mitochondria-associated CIRV replication in yeast and in planta. In vitro reconstitution revealed the need for the retromer for the full activity of the viral replicase. The viral p33 replication protein interacts with the retromer complex, including Vps26, Vps29, and Vps35. We demonstrate that TBSV p33-driven retargeting of the retromer into VROs results in delivery of critical retromer cargoes, such as 1) Psd2 phosphatidylserine decarboxylase, 2) Vps34 phosphatidylinositol 3-kinase (PI3K), and 3) phosphatidylinositol 4-kinase (PI4Kα-like). The recruitment of these cellular enzymes by the co-opted retromer is critical for de novo production and enrichment of phosphatidylethanolamine phospholipid, phosphatidylinositol-3-phosphate [PI(3)P], and phosphatidylinositol-4-phosphate [PI(4)P] phosphoinositides within the VROs. Co-opting cellular enzymes required for lipid biosynthesis and lipid modifications suggest that tombusviruses could create an optimized lipid/membrane microenvironment for efficient VRO assembly and protection of the viral RNAs during virus replication. We propose that compartmentalization of these lipid enzymes within VROs helps tombusviruses replicate in an efficient milieu. In summary, tombusviruses target a major crossroad in the secretory and recycling pathways via coopting the retromer complex and the tubular endosomal network to build VROs in infected cells.


Assuntos
Proteínas de Transporte Vesicular/metabolismo , Replicação Viral/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interações Hospedeiro-Patógeno/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Peroxissomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , RNA Viral/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas Virais/metabolismo , Compartimentos de Replicação Viral/metabolismo , Compartimentos de Replicação Viral/fisiologia
9.
PLoS Pathog ; 16(12): e1009120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370420

RESUMO

Positive-strand RNA viruses replicate in host cells by forming large viral replication organelles, which harbor numerous membrane-bound viral replicase complexes (VRCs). In spite of its essential role in viral replication, the biogenesis of the VRCs is not fully understood. The authors identified critical roles of cellular membrane-shaping proteins and PI(3)P (phosphatidylinositol 3-phosphate) phosphoinositide, a minor lipid with key functions in endosomal vesicle trafficking and autophagosome biogenesis, in VRC formation for tomato bushy stunt virus (TBSV). The authors show that TBSV co-opts the endosomal SNX-BAR (sorting nexin with Bin/Amphiphysin/Rvs- BAR domain) proteins, which bind to PI(3)P and have membrane-reshaping function during retromer tubular vesicle formation, directly into the VRCs to boost progeny viral RNA synthesis. We find that the viral replication protein-guided recruitment and pro-viral function of the SNX-BAR proteins depends on enrichment of PI(3)P at the site of viral replication. Depletion of SNX-BAR proteins or PI(3)P renders the viral double-stranded (ds)RNA replication intermediate RNAi-sensitive within the VRCs in the surrogate host yeast and in planta and ribonuclease-sensitive in cell-free replicase reconstitution assays in yeast cell extracts or giant unilamellar vesicles (GUVs). Based on our results, we propose that PI(3)P and the co-opted SNX-BAR proteins are coordinately exploited by tombusviruses to promote VRC formation and to play structural roles and stabilize the VRCs during viral replication. Altogether, the interplay between the co-opted SNX-BAR membrane-shaping proteins, PI(3)P and the viral replication proteins leads to stable VRCs, which provide the essential protection of the viral RNAs against the host antiviral responses.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Nexinas de Classificação/metabolismo , Tombusvirus/fisiologia , Proteínas do Complexo da Replicase Viral/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Células Cultivadas , Interações Hospedeiro-Patógeno/genética , Organismos Geneticamente Modificados , Fosfatidilinositóis/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/fisiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Nexinas de Classificação/química , Nexinas de Classificação/fisiologia , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Tombusvirus/metabolismo , Proteínas do Complexo da Replicase Viral/fisiologia , Replicação Viral/genética
10.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641477

RESUMO

Positive-strand RNA [(+)RNA] viruses are important pathogens of humans, animals, and plants and replicate inside host cells by coopting numerous host factors and subcellular membranes. To gain insights into the assembly of viral replicase complexes (VRCs) and dissect the roles of various lipids and coopted host factors, we have reconstituted Tomato bushy stunt virus (TBSV) replicase using artificial giant unilamellar vesicles (GUVs). We demonstrate that reconstitution of VRCs on GUVs with endoplasmic reticulum (ER)-like phospholipid composition results in a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)RNA viruses. TBSV VRCs assembled on GUVs provide significant protection of the double-stranded RNA (dsRNA) replication intermediate against the dsRNA-specific RNase III. The lipid compositions of GUVs have pronounced effects on in vitro TBSV replication, including (-) and (+)RNA synthesis. The GUV-based assay has led to the discovery of the critical role of phosphatidylserine in TBSV replication and a novel role for phosphatidylethanolamine in asymmetrical (+)RNA synthesis. The GUV-based assay also showed stimulatory effects by phosphatidylinositol-3-phosphate [PI(3)P] and ergosterol on TBSV replication. We demonstrate that eEF1A and Hsp70 coopted replicase assembly factors, Vps34 phosphatidylinositol 3-kinase (PI3K) and the membrane-bending ESCRT factors, are required for reconstitution of the active TBSV VRCs in GUVs, further supporting that the novel GUV-based in vitro approach recapitulates critical steps and involves essential coopted cellular factors of the TBSV replication process. Taken together, this novel GUV assay will be highly suitable to dissect the functions of viral and cellular factors in TBSV replication.IMPORTANCE Understanding the mechanism of replication of positive-strand RNA viruses, which are major pathogens of plants, animals, and humans, can lead to new targets for antiviral interventions. These viruses subvert intracellular membranes for virus replication and coopt numerous host proteins, whose functions during virus replication are not yet completely defined. To dissect the roles of various host factors in Tomato bushy stunt virus (TBSV) replication, we have developed an artificial giant unilamellar vesicle (GUV)-based replication assay. The GUV-based in vitro approach recapitulates critical steps of the TBSV replication process. GUV-based reconstitution of the TBSV replicase revealed the need for a complex mixture of phospholipids, especially phosphatidylserine and phosphatidylethanolamine, in TBSV replication. The GUV-based approach will be useful to dissect the functions of essential coopted cellular factors.


Assuntos
RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética , Tombusvirus/genética , Lipossomas Unilamelares/metabolismo , Proteínas Virais/genética , Bioensaio , Linhagem Celular , Retículo Endoplasmático/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ergosterol/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/metabolismo , Lipossomas Unilamelares/química , Proteínas Virais/metabolismo , Replicação Viral
11.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269127

RESUMO

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Assuntos
Interações Hospedeiro-Patógeno/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Replicação Viral/genética , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esteróis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
12.
Viruses ; 12(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947719

RESUMO

Recent discoveries on virus-driven hijacking and compartmentalization of the cellular glycolytic and fermentation pathways to support robust virus replication put the spotlight on the energy requirement of viral processes. The active recruitment of glycolytic enzymes in combination with fermentation enzymes by the viral replication proteins emphasizes the advantages of producing ATP locally within viral replication structures. This leads to a paradigm shift in our understanding of how viruses take over host metabolism to support the virus's energy needs during the replication process. This review highlights our current understanding of how a small plant virus, Tomato bushy stunt virus, exploits a conserved energy-generating cellular pathway during viral replication. The emerging picture is that viruses not only rewire cellular metabolic pathways to obtain the necessary resources from the infected cells but the fast replicating viruses might have to actively hijack and compartmentalize the energy-producing enzymes to provide a readily available source of ATP for viral replication process.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Tombusvirus/fisiologia , Replicação Viral , Aerobiose , Fermentação , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Neoplasias/metabolismo , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia
13.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597780

RESUMO

Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.


Assuntos
ATPases Transportadoras de Cálcio/genética , Carmovirus/genética , Chaperonas Moleculares/genética , Nodaviridae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/deficiência , Carmovirus/metabolismo , Cátions Bivalentes , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Sistema Livre de Células/virologia , Transporte de Íons , Manganês/metabolismo , Nodaviridae/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
14.
PLoS Pathog ; 15(10): e1008092, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31648290

RESUMO

The viral replication proteins of plus-stranded RNA viruses orchestrate the biogenesis of the large viral replication compartments, including the numerous viral replicase complexes, which represent the sites of viral RNA replication. The formation and operation of these virus-driven structures require subversion of numerous cellular proteins, membrane deformation, membrane proliferation, changes in lipid composition of the hijacked cellular membranes and intensive viral RNA synthesis. These virus-driven processes require plentiful ATP and molecular building blocks produced at the sites of replication or delivered there. To obtain the necessary resources from the infected cells, tomato bushy stunt virus (TBSV) rewires cellular metabolic pathways by co-opting aerobic glycolytic enzymes to produce ATP molecules within the replication compartment and enhance virus production. However, aerobic glycolysis requires the replenishing of the NAD+ pool. In this paper, we demonstrate the efficient recruitment of pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) fermentation enzymes into the viral replication compartment. Depletion of Pdc1 in combination with deletion of the homologous PDC5 in yeast or knockdown of Pdc1 and Adh1 in plants reduced the efficiency of tombusvirus replication. Complementation approach revealed that the enzymatically functional Pdc1 is required to support tombusvirus replication. Measurements with an ATP biosensor revealed that both Pdc1 and Adh1 enzymes are required for efficient generation of ATP within the viral replication compartment. In vitro reconstitution experiments with the viral replicase show the pro-viral function of Pdc1 during the assembly of the viral replicase and the activation of the viral p92 RdRp, both of which require the co-opted ATP-driven Hsp70 protein chaperone. We propose that compartmentalization of the co-opted fermentation pathway in the tombusviral replication compartment benefits the virus by allowing for the rapid production of ATP locally, including replenishing of the regulatory NAD+ pool by the fermentation pathway. The compartmentalized production of NAD+ and ATP facilitates their efficient use by the co-opted ATP-dependent host factors to support robust tombusvirus replication. We propose that compartmentalization of the fermentation pathway gives an evolutionary advantage for tombusviruses to replicate rapidly to speed ahead of antiviral responses of the hosts and to outcompete other pathogenic viruses. We also show the dependence of turnip crinkle virus, bamboo mosaic virus, tobacco mosaic virus and the insect-infecting Flock House virus on the fermentation pathway, suggesting that a broad range of viruses might induce this pathway to support rapid replication.


Assuntos
Álcool Desidrogenase/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/crescimento & desenvolvimento , Replicação Viral/fisiologia , Trifosfato de Adenosina/biossíntese , Fermentação/fisiologia , Glicólise/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , NAD/metabolismo , RNA Viral/biossíntese , Saccharomyces cerevisiae/metabolismo , Nicotiana/virologia , Tombusvirus/genética , Replicação Viral/genética
15.
Proc Natl Acad Sci U S A ; 116(43): 21739-21747, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591191

RESUMO

Bacterial virulence factors or effectors are proteins targeted into host cells to coopt or interfere with cellular proteins and pathways. Viruses often coopt the same cellular proteins and pathways to support their replication in infected cells. Therefore, we screened the Legionella pneumophila effectors to probe virus-host interactions and identify factors that modulate tomato bushy stunt virus (TBSV) replication in yeast surrogate host. Among 302 Legionella effectors tested, 28 effectors affected TBSV replication. To unravel a coopted cellular pathway in TBSV replication, the identified DrrA effector from Legionella was further exploited. We find that expression of DrrA in yeast or plants blocks TBSV replication through inhibiting the recruitment of Rab1 small GTPase and endoplasmic reticulum-derived COPII vesicles into the viral replication compartment. TBSV hijacks Rab1 and COPII vesicles to create enlarged membrane surfaces and optimal lipid composition within the viral replication compartment. To further validate our Legionella effector screen, we used the Legionella effector LepB lipid kinase to confirm the critical proviral function of PI(3)P phosphoinositide and the early endosomal compartment in TBSV replication. We demonstrate the direct inhibitory activity of LegC8 effector on TBSV replication using a cell-free replicase reconstitution assay. LegC8 inhibits the function of eEF1A, a coopted proviral host factor. Altogether, the identified bacterial effectors with anti-TBSV activity could be powerful reagents in cell biology and virus-host interaction studies. This study provides important proof of concept that bacterial effector proteins can be a useful toolbox to identify host factors and cellular pathways coopted by (+)RNA viruses.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Legionella pneumophila/metabolismo , Tombusvirus/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Agrobacterium tumefaciens/virologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/virologia , Legionella pneumophila/patogenicidade , Saccharomyces cerevisiae/virologia , Nicotiana/virologia , Tombusvirus/metabolismo , Replicação Viral/fisiologia
16.
PLoS Pathog ; 15(5): e1007771, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31136641

RESUMO

Positive-stranded RNA viruses replicate inside cells and depend on many co-opted cellular factors to complete their infection cycles. To combat viruses, the hosts use conserved restriction factors, such as DEAD-box RNA helicases, which can function as viral RNA sensors or as effectors by blocking RNA virus replication. In this paper, we have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. The helicase function of RH30 was required for restriction of tomato bushy stunt virus (TBSV) replication. Knock-down of RH30 levels in Nicotiana benthamiana led to increased TBSV accumulation and RH30 knockout lines of Arabidopsis supported higher level accumulation of turnip crinkle virus. We show that RH30 DEAD-box helicase interacts with p33 and p92pol replication proteins of TBSV, which facilitates targeting of RH30 from the nucleus to the large TBSV replication compartment consisting of aggregated peroxisomes. Enrichment of RH30 in the nucleus via fusion with a nuclear retention signal at the expense of the cytosolic pool of RH30 prevented the re-localization of RH30 into the replication compartment and canceled out the antiviral effect of RH30. In vitro replicase reconstitution assay was used to demonstrate that RH30 helicase blocks the assembly of viral replicase complex, the activation of the RNA-dependent RNA polymerase function of p92pol and binding of p33 replication protein to critical cis-acting element in the TBSV RNA. Altogether, these results firmly establish that the plant DDX17-like RH30 DEAD-box helicase is a potent, effector-type, restriction factor of tombusviruses and related viruses. The discovery of the antiviral role of RH30 DEAD-box helicase illustrates the likely ancient roles of RNA helicases in plant innate immunity.


Assuntos
Antivirais/farmacologia , RNA Helicases DEAD-box/farmacologia , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Tombusvirus/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Tombusvirus/fisiologia , Proteínas Virais/genética , Montagem de Vírus/efeitos dos fármacos
17.
PLoS Pathog ; 15(1): e1007530, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625229

RESUMO

Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tombusvirus/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Peroxissomos/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatidilinositóis , Vírus de RNA/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Tombusvirus/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/genética
18.
Virology ; 519: 207-222, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29734044

RESUMO

Similar to other (+)RNA viruses, tomato bushy stunt virus (TBSV) utilizes metabolites, lipids, membranes, and co-opted host factors during replication. The coordination of cell metabolism and growth with environmental cues is performed by the target of rapamycin (TOR) kinase in eukaryotic cells. In this paper, we find that TBSV replication partially inhibits TOR activity, likely due to recruitment of glycolytic enzymes to the viral replication compartment, which results in reduced ATP levels in the cytosol. Complete inhibition of TOR activity with rapamycin in yeast or AZD8055 inhibitor in plants reduces tombusvirus replication. We find that high glucose concentration, which stimulates TOR activity, enhanced tombusvirus replication in yeast. Depletion of yeast Sch9 or plant S6K1 kinase, a downstream effector of TOR, also inhibited tombusvirus replication in yeast and plant or the assembly of the viral replicase in vitro. Altogether, the TOR pathway is crucial for TBSV to replicate efficiently in hosts.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nicotiana/virologia , RNA Viral/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Tombusvirus/genética , Fatores de Transcrição/metabolismo , Replicação Viral , Trifosfato de Adenosina/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Morfolinas/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleotídeos/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Sirolimo/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Tombusvirus/fisiologia , Fatores de Transcrição/antagonistas & inibidores
19.
Cell Host Microbe ; 22(5): 639-652.e7, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29107644

RESUMO

Viruses accomplish their replication by exploiting many cellular resources, including metabolites and energy. Similarly to other (+)RNA viruses, tomato bushy stunt virus (TBSV) induces major changes in infected cells. However, the source of energy required to fuel TBSV replication is unknown. We find that TBSV co-opts the cellular glycolytic ATP-generating pyruvate kinase (PK) directly into the viral replicase complex to boost progeny RNA synthesis. The co-opted PK generates high levels of ATP within the viral replication compartment at the expense of a reduction in cytosolic ATP pools. The ATP generated by the co-opted PK is used to promote the helicase activity of recruited cellular DEAD-box helicases, which are involved in the production of excess viral (+)RNA progeny. Altogether, recruitment of PK and local production of ATP within the replication compartment allow the virus replication machinery an access to plentiful ATP, facilitating robust virus replication.


Assuntos
Trifosfato de Adenosina/metabolismo , Glicólise/fisiologia , Piruvato Quinase/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Tombusvirus/metabolismo , Replicação Viral/fisiologia , RNA Helicases DEAD-box/metabolismo , Escherichia coli , Técnicas de Silenciamento de Genes , Inativação Gênica , Interações Hospedeiro-Patógeno/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Plasmídeos , Proteômica , Vírus de RNA/enzimologia , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/enzimologia , Tombusvirus/genética , Replicação Viral/genética
20.
PLoS Pathog ; 13(10): e1006689, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29059239

RESUMO

The intricate interactions between viruses and hosts include exploitation of host cells for viral replication by using many cellular resources, metabolites and energy. Tomato bushy stunt virus (TBSV), similar to other (+)RNA viruses, induces major changes in infected cells that lead to the formation of large replication compartments consisting of aggregated peroxisomal and ER membranes. Yet, it is not known how TBSV obtains the energy to fuel these energy-consuming processes. In the current work, the authors discovered that TBSV co-opts the glycolytic ATP-generating Pgk1 phosphoglycerate kinase to facilitate the assembly of new viral replicase complexes. The recruitment of Pgk1 into the viral replication compartment is through direct interaction with the viral replication proteins. Altogether, we provide evidence that the ATP generated locally within the replication compartment by the co-opted Pgk1 is used to fuel the ATP-requirement of the co-opted heat shock protein 70 (Hsp70) chaperone, which is essential for the assembly of new viral replicase complexes and the activation of functional viral RNA-dependent RNA polymerase. The advantage of direct recruitment of Pgk1 into the virus replication compartment could be that the virus replicase assembly does not need to intensively compete with cellular processes for access to ATP. In addition, local production of ATP within the replication compartment could greatly facilitate the efficiency of Hsp70-driven replicase assembly by providing high ATP concentration within the replication compartment.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fosfoglicerato Quinase/metabolismo , Tombusvirus/crescimento & desenvolvimento , Montagem de Vírus/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA