Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Open ; 12(5)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199309

RESUMO

Cell recruitment is a process by which a differentiated cell induces neighboring cells to adopt its same cell fate. In Drosophila, cells expressing the protein encoded by the wing selector gene, vestigial (vg), drive a feed-forward recruitment signal that expands the Vg pattern as a wave front. However, previous studies on Vg pattern formation do not reveal these dynamics. Here, we use live imaging to show that multiple cells at the periphery of the wing disc simultaneously activate a fluorescent reporter of the recruitment signal, suggesting that cells may be recruited without the need for their contact neighbors be recruited in advance. In support of this observation, when Vg expression is inhibited either at the dorsal-ventral boundary or away from it, the activation of the recruitment signal still occurs at a distance, suggesting that Vg expression is not absolutely required to send or propagate the recruitment signal. However, the strength and extent of the recruitment signal is clearly compromised. We conclude that a feed-forward, contact-dependent cell recruitment process is not essential for Vg patterning, but it is necessary for robustness. Overall, our findings reveal a previously unidentified role of cell recruitment as a robustness-conferring cell differentiation mechanism.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas Nucleares , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
2.
Curr Eye Res ; 46(4): 600-605, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32865440

RESUMO

PURPOSE: Deficiency in Cystathionine ß-synthase (CBS) leads to an abnormal accumulation of homocysteine and results in classical homocystinuria, a multi-systemic disorder that affects connective tissue, muscles, the central nervous system, and the eyes. However, the genetic players and mechanisms underlying vision alterations in patients with homocystinuria are little understood. MATERIALS AND METHODS: The fruit fly, Drosophila melanogaster, is a useful system to investigate the genetic basis of several human diseases, but no study to date has used Drosophila as model of homocystinuria. Here, we use Drosophila genetic tools to down-regulate CBS expression and evaluate its behavioral response to light. RESULTS: We show that CBS-deficient flies do not display the normal stereotypical behavior of attraction towards a luminous source, known as phototaxis. This behavior cannot be attributed to a motor or olfactory deficiency, but it is most likely related to a lower visual acuity. CBS-deficient flies are overall smaller, but smaller eyes do not explain their lack of phototactic response. CONCLUSIONS: The vision phenotype of CBS knock-down flies is consistent with severe myopia in homocystinuria patients. We propose to use Drosophila as a model to investigate ocular manifestations underlying homocystinuria.


Assuntos
Cistationina beta-Sintase/deficiência , Drosophila melanogaster/enzimologia , Fototaxia/fisiologia , Transtornos da Visão/enzimologia , Animais , Western Blotting , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Drosophila melanogaster/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Homocisteína/metabolismo , Homocistinúria/enzimologia , Transtornos da Visão/fisiopatologia
3.
Dev Biol ; 462(2): 141-151, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197891

RESUMO

Organs mainly attain their size by cell growth and proliferation, but sometimes also grow through recruitment of undifferentiated cells. Here we investigate the participation of cell recruitment in establishing the pattern of Vestigial (Vg), the product of the wing selector gene in Drosophila. We find that the Vg pattern overscales along the dorsal-ventral (DV) axis of the wing imaginal disc, i.e., it expands faster than the DV length of the pouch. The overscaling of the Vg pattern cannot be explained by differential proliferation, apoptosis, or oriented-cell divisions, but can be recapitulated by a mathematical model that explicitly considers cell recruitment. When impairing cell recruitment genetically, we find that the Vg pattern almost perfectly scales and adult wings are approximately 20% smaller. Conversely, impairing cell proliferation results in very small wings, suggesting that cell recruitment and cell proliferation additively contribute to organ growth in this system. Furthermore, using fluorescent reporter tools, we provide direct evidence that cell recruitment is initiated between early and mid third-instar larval development. Altogether, our work quantitatively shows when, how, and by how much cell recruitment shapes the Vg pattern and drives growth of the Drosophila wing.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas Nucleares/genética , Asas de Animais/crescimento & desenvolvimento , Animais , Divisão Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Discos Imaginais/crescimento & desenvolvimento , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Wnt1/metabolismo
4.
PLoS Comput Biol ; 13(7): e1005610, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671940

RESUMO

In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj.


Assuntos
Moléculas de Adesão Celular/metabolismo , Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Caderinas/metabolismo , Simulação por Computador , Drosophila/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Glicoproteínas de Membrana/metabolismo , Miosinas/metabolismo , Organogênese/fisiologia , Asas de Animais/citologia
5.
Evol Dev ; 10(3): 360-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18460097

RESUMO

Understanding the complex interaction between genotype and phenotype is a major challenge of Evolutionary Developmental Biology. One important facet of this complex interaction has been called "Developmental System Drift" (DSD). DSD occurs when a similar phenotype, which is homologous across a group of related species, is produced by different genes or gene expression patterns in each of these related species. We constructed a mathematical model to explore the developmental and evolutionary dynamics of DSD in the gene network underlying wing polyphenism in ants. Wing polyphenism in ants is the ability of an embryo to develop into a winged queen or a wingless worker in response to an environmental cue. Although wing polyphenism is homologous across all ants, the gene network that underlies wing polyphenism has evolved. In winged ant castes, our simulations reproduced the conserved gene expression patterns observed in the network that controls wing development in holometabolous insects. In wingless ant castes, we simulated the suppression of wings by interrupting (up- or downregulating) the expression of genes in the network. Our simulations uncovered the existence of four groups of genes that have similar effects on target gene expression and growth. Although each group is comprised of genes occupying different positions in the network, their interruption produces vestigial discs that are similar in size and shape. The implications of our results for understanding the origin, evolution, and dissociation of the gene network underlying wing polyphenism in ants are discussed.


Assuntos
Formigas/crescimento & desenvolvimento , Formigas/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Modelos Biológicos , Fenótipo , Asas de Animais/crescimento & desenvolvimento , Animais , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA