Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
ACS Chem Neurosci ; 15(7): 1388-1414, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525886

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aß and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aß1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.


Assuntos
Doença de Alzheimer , Ácidos Cumáricos , Camundongos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inflamassomos , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peróxido de Hidrogênio , Metais , Células PC12 , Acetilcolinesterase/metabolismo
2.
JHEP Rep ; 6(2): 100974, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38283757

RESUMO

Background & Aims: The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC. Methods: AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus. The role of AKR1B1 in metabolic switching in vitro was assessed through media conditioning, lentiviral transfection, and pharmacological probes. A proteomic and metabolomic approach was applied for the in-depth investigation of metabolic pathways. Preclinically, mice were subjected to a high-fructose diet and diethylnitrosamine to investigate the role of AKR1B1 in the hyperglycemia-mediated metabolic switching characteristic of MASLD-HCC. Results: A significant increase in the expression of AKR1B1 was observed in tissue and plasma samples from patients with MASLD/MASH, HCC, and HCC with diabetes mellitus compared to normal samples. Mechanistically, in vitro assays revealed that AKR1B1 modulates the Warburg effect, mitochondrial dynamics, the tricarboxylic acid cycle, and lipogenesis to promote hyperglycemia-mediated MASLD and cancer progression. A pathological increase in the expression of AKR1B1 was observed in experimental MASLD-HCC, and expression was positively correlated with high blood glucose levels. High-fructose diet + diethylnitrosamine-treated animals also exhibited statistically significant elevation of metabolic markers and carcinogenesis markers. AKR1B1 inhibition with epalrestat or NARI-29 inhibited cellular metabolism in in vitro and in vivo models. Conclusions: Pathological AKR1B1 modulates hepatic metabolism to promote MASLD-associated hepatocarcinogenesis. Aldose reductase inhibition modulates the glycolytic pathway to prevent precancerous hepatocyte formation. Impact and implications: This research work highlights AKR1B1 as a druggable target in metabolic dysfunction-associated steatotic liver disease (MASLD) and hepatocellular carcinoma (HCC), which could provide the basis for the development of new chemotherapeutic agents. Moreover, our results indicate the potential of plasma AKR1B1 levels as a prognostic marker and diagnostic test for MASLD and associated HCC. Additionally, a major observation in this study was that AKR1B1 is associated with the promotion of the Warburg effect in HCC.

3.
Int J Biol Macromol ; 258(Pt 1): 128776, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114014

RESUMO

For the first time, the co-delivery of chloroquine phosphate and flavopiridol by intra-articular route was achieved to provide local joint targeting in Complete Freund's Adjuvant-induced arthritis rat model. The presence of paired-bean structure onto the dispersed oil droplets of o/w nanosized emulsions allows efficient entrapment of two drugs (85.86-96.22 %). The dual drug-loaded emulsions displayed a differential in vitro drug release behavior, near normal cell viability in MTT assay, better cell uptake (internalization) and better reducing effect of mean immunofluorescence intensity of inflammatory proteins such as NF-κB and iNOS at in vitro RAW264.7 macrophage cell line. The radiographical study, ELISA test, RT-PCR study and H & E staining also indicated a reduction in joint tissue swelling, IL-6 and TNF-α levels diminution, fold change diminution in the mRNA expressions for NF-κB, IL-1ß, IL-6 and PGE2 and maintenance of near normal histology at bone cartilage interface respectively. The results of metabolomic pathway analysis performed by LC-MS/MS method using the rat blood (plasma) collected from disease control and dual drug-loaded emulsions treatment groups revealed a new follow-up study to understand not only the disease progression but also the formulation therapeutic efficacy assessment.


Assuntos
Artrite Experimental , Quitosana , Cloroquina/análogos & derivados , Flavonoides , Piperidinas , Ratos , Animais , NF-kappa B/metabolismo , Adjuvante de Freund/efeitos adversos , Quitosana/uso terapêutico , Interleucina-6 , Cromatografia Líquida , Emulsões/efeitos adversos , Seguimentos , Artrite Experimental/tratamento farmacológico , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia
4.
Anal Biochem ; 683: 115333, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37907159

RESUMO

The present study evaluates the pharmacokinetics and metabolic stability of a novel lysosomotropic autophagy inhibitor, IITZ-01 using an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS). It is required as this lead molecule awaits pre-clinical studies for development because of significant therapeutic outcomes in triple-negative breast cancer and renal cancer. A bioanalytical method for the quantitative determination of IITZ-01 in the plasma of mice was developed using the UPLC-MS/MS technique. The UPLC-MS/MS method was validated according to US-FDA bioanalytical guidance and successfully applied to study the pharmacokinetics and metabolic stability. Separation of IITZ- 01 and ZSTK474 (IS) from endogenous components with high selectivity and sensitivity (0.5 ng/mL) was achieved using Waters Acquity BEH C-18 column (50 mm × 2.1 mm, 1.7 µm). A gradient mobile phase consisting of 0.1 % formic acid in water and 0.1 % formic acid in acetonitrile was applied at a flow rate of 0.2 mL/min. Electrospray ionization was employed in positive ion mode for detection, while quantification utilized the multiple reaction monitoring (MRM) mode. This involved using [M+H]+fragment ions at m/z 483.19 â†’ 235.09 for IITZ-01 and m/z 418 â†’ 138 for the internal standard (IS). The method was validated over the calibration range of 0.5-800 ng/mL. The LLOQ of IITZ-01 was 0.5 ng/mL in mice plasma. The method demonstrated good in terms of intra- and inter-day precision and accuracy. The matrix effect was found to be negligible, and the stability data were within acceptable limits. The validated technique supports suitability, reliability, reproducibility, and sensitivity for the pre-clinical investigation of IITZ-01 pharmacokinetics in mice and metabolic stability in human liver microsomes.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Humanos , Camundongos , Animais , Espectrometria de Massas em Tandem/métodos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos
5.
J Environ Pathol Toxicol Oncol ; 42(4): 15-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522565

RESUMO

According to the World Health Organization (WHO), cancer is the second-highest cause of mortality worldwide, killing nearly 9.6 million people annually. Despite the advances in diagnosis and treatment during the last couple of decades, it remains a serious concern due to the limitations of currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. In addition, many etiological factors such as environmental and genetic factors initiate the activation of the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) pathway. This aberrant activation of the JAK-STAT pathway has been reported in various disease states, including inflammatory conditions, hematologic malignancies, and cancer. For instance, many patients with myeloproliferative neoplasms carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of pathogenesis and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK-STAT pathway. Our aim is not to be expansive but to highlight emerging ideas towards preventive therapy in a modern view of JAK-STAT inhibitors. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical drugs for managing cancer as a new therapeutic approach.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo
6.
Environ Toxicol Pharmacol ; 101: 104183, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321333

RESUMO

Exposure to ambient particulate matter (PM2.5) has been shown to disturb the gut microbiome homeostasis and cause initiation of neuroinflammation and neurodegeneration via gut-brain bi-directional axis. Polyaromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are important organic constituents of PM2.5 that could be involved in the microbiome-gut-brain axis-mediated neurodegeneration. Melatonin (ML) has been shown to modulate the microbiome and curb inflammation in the gut and brain. However, no studies have been reported for its effect on PM2.5-induced neuroinflammation. In the current study, it was observed that treatment with ML at 100 µM significantly inhibits microglial activation (HMC-3 cells) and colonic inflammation (CCD-841 cells) by the conditioned media from PM2.5 exposed BEAS2B cells. Further, melatonin treatment at a dose of 50 mg/kg to C57BL/6 mice exposed to PM2.5 (at a dose of 60 µg/animal) for 90 days significantly alleviated the neuroinflammation and neurodegeneration caused by PAHs in PM2.5 by modulating olfactory-brain and microbiome-gut-brain axis.


Assuntos
Poluentes Atmosféricos , Melatonina , Animais , Camundongos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Melatonina/farmacologia , Melatonina/uso terapêutico , Eixo Encéfalo-Intestino , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação
7.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37260462

RESUMO

Background: Cigarette smoking remains a primary cause of chronic lung diseases. After a steady decline, smoking rates have recently increased especially with the introduction of newer electronic nicotine delivery devices, and it is also emerging that dual- or poly-product usage is on the rise. Additionally, with the introduction of IQOS (a heated tobacco product) globally, its impact on human health needs to be investigated. In this study we tested if dual exposure (cigarette smoke (CS)+IQOS) is detrimental to lung epithelial cells when compared with CS or IQOS exposure alone. Methods: Human airway epithelial cells (BEAS-2B) were exposed to either CS, IQOS or their dual combination (CS+IQOS) at concentrations of 0.1%, 1.0%, 2.5% and 5.0%. Cytotoxicity, oxidative stress, mitochondrial homeostasis, mitophagy and effects on epithelial-mesenchymal transition (EMT) signalling were assessed. Results: Both CS and IQOS alone significantly induced loss of cell viability in a concentration-dependent manner which was further enhanced by dual exposure compared with IQOS alone (p<0.01). Dual exposure significantly increased oxidative stress and perturbed mitochondrial homeostasis when compared with CS or IQOS alone (p<0.05). Additionally, dual exposure induced EMT signalling as shown by increased mesenchymal (α-smooth muscle actin and N-cadherin) and decreased epithelial (E-cadherin) markers when compared with CS or IQOS alone (p<0.05). Conclusion: Collectively, our study demonstrates that dual CS+IQOS exposure enhances pathogenic signalling mediated by oxidative stress and mitochondrial dysfunction leading to EMT activation, which is an important regulator of small airway fibrosis in obstructive lung diseases.

8.
Chem Biol Interact ; 381: 110566, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257577

RESUMO

The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.


Assuntos
Aldeído Redutase , Cardiotoxicidade , Rodanina , Animais , Camundongos , Aldeído Redutase/metabolismo , Apoptose , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Rodanina/análogos & derivados , Rodanina/farmacologia
9.
Biochem Pharmacol ; 211: 115528, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011733

RESUMO

It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.


Assuntos
Aldeído Redutase , Neoplasias , Humanos , Aldeído Redutase/metabolismo , Neoplasias/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Aldeídos , Microambiente Tumoral
10.
Int Immunopharmacol ; 119: 110145, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044030

RESUMO

Identifying the target linking inflammation and oxidative stress to aggravate the disease progression will help to prevent colitis associated carcinogenesis. Since AKR1B1 overexpression is observed in inflammatory diseases and various cancers, we have investigated the role of AKR1B1 in colitis-associated colon carcinogenesis with the aid of epalrestat and its potent analogue NARI-29 (investigational molecule) as pharmacological probes. A TNF-α inducible NF-κB reporter cell line (GloResponse™ NF-κB-RE-luc2P HEK293) and dextran sodium sulfate (DSS) and 1,2 dimethyl hydrazine (DMH))-induced mouse model was used to investigate our hypothesis in vitro and in vivo. Clinically, an increased expression of AKR1B1 was observed in patients with ulcerative colitis. Our in vitro and in vivo findings suggest that the AKR1B1 modulated inflammation and ROS generation for the progression of colitis to colon cancer. AKR1B1 overexpression was observed in DSS + DMH-treated mice colons. Moreover, we could observe histopathological changes like immune cell infiltration, aberrant crypt foci, and tumour formation in DC groups. Mechanistically, we have witnessed modulation of the IKK/IκB/NF-κB and Akt/FOXO-3a/DR axis, increased inflammatory cytokines, increased expression of proliferative markers, Ki-67 and PCNA, and accumulation of ß-catenin in the colon epithelium. However, pharmacological inhibition of AKR1B1 using NARI-29 or EPS has reversed the clinical, histopathological, and molecular alterations induced by DSS + DMH, confirming the obvious role of AKR1B1 in the promotion of colitis-associated carcinogenesis. In conclusion, our findings suggest that AKR1B1 targeted therapy could be a promising strategy for preventing CA-CRC and NARI-29 could be developed as a potent AKR1B1 inhibitor.


Assuntos
Colite Ulcerativa , Colite , Neoplasias do Colo , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Células HEK293 , Colite/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Inflamação/patologia , Neoplasias do Colo/patologia , Carcinogênese , Sulfato de Dextrana , Modelos Animais de Doenças , Aldeído Redutase
12.
Colloids Surf B Biointerfaces ; 221: 113023, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403414

RESUMO

A new lithocholic acid/IR 780 conjugate (LIC) was designed and synthesized for theranostic applications in triple-negative breast cancer. Lithocholic acid is an antitumor biomacromolecule and acts via multiple molecular targets. IR 780 iodide is a fluorescent NIR organic dye researched as a photothermal agent in cancer therapy. A combined conjugate, LIC can have wide applications as a Photothermal/chemotherapeutic and imaging agent in cancer therapy. LIC was characterized and evaluated for its photothermal cytotoxic effect in breast cancer cell lines. Further, to improve the bioavailability of the LIC, a polymeric (PLGA) nanosystem was developed and characterized. The resultant lithocholic acid/IR 780 polymeric nanoconjugates (LIPNCs) were well taken up by the cells and are evident by the inherent red fluorescence of LIC. The LIPNCs also exhibited commendable heat generation when exposed to NIR light (808 nm). The in-vitro anti-cancer studies of LIPNCs also revealed a significant NIR light-based photothermal efficacy (cytotoxic dose 0.75 µM) when compared to the free conjugate (LIC) or the parent moieties. Further cell-based fluorescent and molecular assays showed that LIPNCs induced ROS-mediated apoptotic cell death concurrently being physiologically biocompatible. In-vitro photoacoustic imaging of the LICs exhibited signals comparable to free IR780 dye. Future in vivo studies with LIPNCs or LIC may prove beneficial for developing a promising translational system for its wide application in image-guided cancer theranostics.


Assuntos
Nanoconjugados , Neoplasias , Humanos , Ácido Litocólico , Espécies Reativas de Oxigênio , Apoptose , Polímeros , Corantes Fluorescentes
13.
J Ethnopharmacol ; 301: 115765, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36195303

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mesua Assamica (King & prain) Kosterm. (MA) is an evergreen endemic medicinal tree available in Assam in India and other parts of south Asia. The bark of the plant is traditionally used for ant-malarial activity and treating fevers. It was reported to have anti-oxidant, anti-inflammatory, anti-diabetic, anti-cancer and anti-malarial properties, but no research findings have been reported about its protective activity on intestinal inflammatory disorders like ulcerative colitis (UC) yet. AIM OF THE STUDY: The aim of the current study is to evaluate the anti-ulcerative property of ethanolic extract of MA (MAE) in-vitro on GloResponse™ NF-кB-RE-luc2P HEK 293 cells for its anti-oxidant and anti-inflammatory activities and in-vivo chronic restraint stress aggravated dextran sodium sulfate (DSS)-induced UC model. MATERIALS AND METHODS: The chemical constituents of MAE were identified by LC-MS/MS. The in-vitro effects of MAE on GloResponse™ NF-кB-RE-luc2P HEK 293 cells stimulated with TNF-α 30 ng/ml were investigated for its potential therapeutic effects. Parameters such as body weights, behavioural, colonoscopy, colon lengths and spleen weights were measured and recorded in chronic restraint stress aggravated DSS-induced UC model in C57BL/6 mice. Histological, cytokines and immunoblotting analysis in the colon tissues were determined to prove its anti-inflammatory and anti-oxidant activities. RESULTS: MAE poses significant anti-oxidant and anti-inflammatory activity in-vitro in GloResponse™ NF-кB-RE-luc2P HEK 293 cells evidenced by DCFDA and immunoflourescence assay. MAE treatment at 100 mg/kg and 200 mg/kg for 14 consecutive days has reduced Disease activity Index (DAI), splenomegaly and improved the shortened colon length and sucrose preference in mice. MAE treatment has increased the levels of anti-oxidants like GSH and reduced the levels of MDA, MPO and nitrite levels in colon tissues. Moreover, MAE has ameliorated neutrophil accumulation, mucosal and submucosal inflammation and crypt density evidenced by histopathology. Furthermore, MAE treatment significantly reduced the increased pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. we found from immunoblotting that there is a concomitant decrease in protein expression of NF-κB, STAT3 signalling cascades and phosphorylation of IKBα with an increase in Nrf2, SOD2, HO-1 and SIRT1 in colon tissues. In addition, we have performed molecular docking studies confirming that phytochemicals present in the MAE have a stronger binding ability and druggability to the NF-κB, Nrf2 and SIRT1 proteins. CONCLUSIONS: MAE exhibited significant anti-colitis activity on chronic restraint stress aggravated DSS-induced ulcerative colitis via regulating NF-κB/STAT3 and HO-1/Nrf2/SIRT1 signaling pathways.


Assuntos
Colite Ulcerativa , NF-kappa B , Animais , Humanos , Camundongos , Anti-Inflamatórios , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Cromatografia Líquida , Colite Ulcerativa/induzido quimicamente , Colo , Citocinas/metabolismo , Sulfato de Dextrana , Células HEK293 , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Casca de Planta/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
14.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499047

RESUMO

Piperine (PIP) is a major phytoconstituent in black pepper which is responsible for various pharmacological actions such as anti-inflammatory, antioxidant, and antitumor activity. To investigate the effects and mechanisms of PIP on cigarette smoke (CS)-induced lung pathology using both in-vitro and in-vivo models. BEAS-2B and A549 cells were exposed to CS extract (CSE) for 48 h; BALB/c mice were exposed to CS (9 cigarettes/day, 4 days) to induce features of airway disease. PIP at doses of (0.25, 1.25, and 6.25 µM, in vitro; 1 and 10 mg/kg, in vivo, i.n) and DEX (1 µM, in vitro; 1 mg/kg, in vivo, i.n) were used to assess cytotoxicity, oxidative stress, epithelial−mesenchymal transition (EMT), Sirtuin1 (SIRT1), inflammation-related cellular signaling, and lung function. PIP treatment protects cells from CSE-induced lung epithelial cell death. PIP treatment restores the epithelial marker (p < 0.05) and decreases the mesenchymal, inflammatory markers (p < 0.05) in both in vitro and in vivo models. The PIP treatment improves the altered lung function (p < 0.05) in mice induced by CS exposure. Mechanistically, PIP treatment modulates SIRT1 thereby reducing the inflammatory markers such as IL-1ß, IL-6 and TNF-α (p < 0.05) and enhancing the epigenetic marker HDAC2 (p < 0.05) and antioxidant marker Nrf2 (p < 0.05) expressions. Thus, PIP alleviates pulmonary inflammation by modulating the SIRT1-mediated inflammatory cascade, inhibits EMT, and activates Nrf2 signaling.


Assuntos
Transição Epitelial-Mesenquimal , Piperidinas , Pneumonia , Fumaça , Animais , Camundongos , Antioxidantes/farmacologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Pneumonia/tratamento farmacológico , Pneumonia/patologia , Sirtuína 1/genética , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Piperidinas/farmacologia
15.
Molecules ; 27(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364474

RESUMO

A series of new 1,2,4-triazolo-linked bis-indolyl conjugates (15a-r) were prepared by multistep synthesis and evaluated for their cytotoxic activity against various human cancer cell lines. It was observed that they were more susceptible to colon and breast cancer cells. Conjugates 15o (IC50 = 2.04 µM) and 15r (IC50 = 0.85 µM) illustrated promising cytotoxicity compared to 5-fluorouracil (5-FU, IC50 = 5.31 µM) against the HT-29 cell line. Interestingly, 15o and 15r induced cell cycle arrest at the G0/G1 phase and disrupted the mitochondrial membrane potential. Moreover, these conjugates led to apoptosis in HT-29 at 2 µM and 1 µM, respectively, and also enhanced the total ROS production as well as the mitochondrial-generated ROS. Immunofluorescence and Western blot assays revealed that these conjugates reduced the expression levels of the PI3K-P85, ß-catenin, TAB-182, ß-actin, AXIN-2, and NF-κB markers that are involved in the ß-catenin pathway of colorectal cancer. The results of the in silico docking studies of 15r and 15o further support their dual inhibitory behaviour against PI3K and tankyrase. Interestingly, the conjugates have adequate ADME-toxicity parameters based on the calculated results of the molecular dynamic simulations, as we found that these inhibitors (15r) influenced the conformational flexibility of the 4OA7 and 3L54 proteins.


Assuntos
Antineoplásicos , Tanquirases , Humanos , beta Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Antineoplásicos/farmacologia , Apoptose , Fluoruracila/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
16.
Phytomedicine ; 106: 154415, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070663

RESUMO

BACKGROUND: Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE: POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase  enzyme. Several studies reported that POH could inhibit the phosphorylation of  NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition.  Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS: Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS: The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1ß and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION: These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.


Assuntos
Colite Ulcerativa , Óleos Voláteis , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Citocinas , Sulfato de Dextrana/efeitos adversos , Dopamina , Amarelo de Eosina-(YS)/efeitos adversos , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/farmacologia , Farnesiltranstransferase/uso terapêutico , Hidrocortisona/farmacologia , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Monoterpenos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óleos Voláteis/farmacologia , Serotonina/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
J Ethnopharmacol ; 282: 114600, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34487845

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cleome species in particular (C. gynandra Linn, C. viscosa Linn, C. rutidosperma DC, C. felina Linn.), commonly known as spider flowers, belong to the genus of flowering plants in Cleomaceae family. Found primarily in the African countries (Kenya, Tanzania, Egypt, South Africa, and Nigeria), Asian countries (India and Afghanistan), European countries (Italy), and also in other countries like Brazil and Austria. These plants are commonly cultivated as a vegetable crop for their nutritional benefits, and the leaves are widely consumed for their health-promoting effects. The different parts of the plants, such as leaves, seeds, flowers, and roots, are used to treat acute and chronic inflammatory disorders, hepatotoxicity, malaria, fungal diseases, and cancer. AIM OF THE STUDY: Detailed investigations in underlining the molecular mechanisms and their wide variety of effects in treating various diseases remain ambiguous. The review focuses on an in-depth discussion of studies targeting phytochemistry and polypharmacology. Thus, the review aims to recapitulate the therapeutic potential of the components of Cleome involved in the treatment of a wide variety of ailments from ancient times were collected and presented along with strategies aiming for future studies. MATERIALS AND METHODS: The information provided is collected from several scientific databases (PubMed, Elsevier, ScienceDirect) and traditional medicine books, and other professional websites. RESULTS AND CONCLUSION: Investigations and current evidence revealed that the different chemical constituents present in cleome species possess various health-promoting effects along with the aerial parts showing promising traditional uses in traditional healing and culinary. An explorative survey in the current review highlights the traditional healing effects along with a broad scope of studies that can be performed in the future.


Assuntos
Cleome , Etnofarmacologia , Etnofarmacologia/métodos , Etnofarmacologia/tendências , Alimento Funcional , Humanos , Medicina Tradicional/métodos , Medicina Tradicional/tendências , Fitoterapia/métodos , Plantas Medicinais
18.
Eur J Pharmacol ; 915: 174467, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34478690

RESUMO

Airflow limitation in chronic obstructive pulmonary disease (COPD) is the result of exaggerated airway fibrosis and obliteration of the small airways due to persistent inflammation, and an impaired anti-oxidant response. EMT has been implicated as an active signalling process in cigarette smoke (CS)-induced lung pathology, and macrolide Azithromycin (AZT) use has gained interest in treating COPD. Here, we tested effectiveness of intra-nasal AZT alone and in combination with dexamethasone (DEX) on CS-induced acute lung inflammation. Human alveolar epithelial cells (A549) were treated with CS extract (CSE) for 48 h, and male Balb/c mice were exposed to CS (3 cigarettes-3 times/day) for 4 days. The effects of AZT alone (0.25 and 1.25 µM, in vitro; 0.5 and 5 mg/kg, in vivo) or in combination with DEX (1 µM, in vitro; 1 mg/kg, in vivo) on CS-induced cellular cytotoxicity, oxidative stress, inflammation, and lung function were assessed. AZT alone and in combination with DEX significantly inhibited the CS (E)-induced expression of mesenchymal protein markers and the regulatory protein ß-catenin. Furthermore, AZT by itself or in combination with DEX significantly suppressed CS-induced expression of the proinflammtory cytokines TNFα, IL1ß and IL6 and prevented pNFkB. Mechanistically, AZT restored the CS-induced reduction in anti-oxidant transcription factor NRF2 and upregulated HDAC2 levels, thereby repressing inflammatory gene expression. Beneficial effects of AZT functionally translated in improved lung mechanics in vivo. Further preclinical and clinical studies are warranted to fully establish and validate the therapeutic efficacy of AZT as a mono- or combination therapy for the treatment of COPD.


Assuntos
Azitromicina
19.
Int Immunopharmacol ; 103: 108436, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34929480

RESUMO

Psoriasis is a chronic inflammatory and proliferative skin disease characterized by pathological skin lesions which significantly impact the quality of life. Recent studies have been proven that inhibitors of farnesyltransferase enzyme showed significant anti-psoriatic activity. Perillyl alcohol (POH) is one such natural molecule having anti proliferative, anti-inflammatory and anti-oxidant properties by inhibiting farnesyltransferase enzyme which further down regulates NF-κB and STAT3 via Ras/Raf/MAPK pathway. Hence, in the current study we aimed to find the effect of POH on human keratinocytes (HaCat) cells in in-vitro and IMQ induced psoriatic like skin inflammation model in mice. POH significantly decreased the intracellular ROS levels and inhibited the phosphorylation of NF-κB and STAT3 in in-vitro. It was found that POH (200 mg/kg, topical application) has reduced the epidermal hyperplasia, psoriasis area and severity index (PASI) scoring; splenomegaly in imiquimod (IMQ) induced psoriatic mice. Further, POH treatment has decreased the pro-inflammatory serum cytokine levels such as IL-6, IL-12/23, TNF-α and IL-1ß and also reduced the expression levels of various inflammatory proteins, COX-2, iNOS, IL-17A, IL-22, NF-кB and STAT3 evidenced by Immunoblotting studies from skin samples. The levels of endogenous antioxidants like glutathione GSH, SOD, Nrf2 were restored to normal levels upon POH treatment. POH downregulated the proteins levels of TLR7, TLR8, CyclinD1 and mRNA expression of Bcl-2 in the skin samples when compared to the IMQ group. POH has ameliorated the hyper-keratosis and acanthosis which was evidenced by histopathology. Collectively, our results suggest that POH has a promising therapeutic application for ameliorating psoriasis-like skin inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Queratinócitos/fisiologia , Monoterpenos/uso terapêutico , Psoríase/tratamento farmacológico , Pele/patologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
20.
J Psychiatr Res ; 144: 462-482, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34768069

RESUMO

Major depressive disorder (MDD) is the foremost leading psychiatric illness prevailing around the globe. It usually exists along with anxiety and other clinical conditions (cardiovascular, cancer, neurodegenerative diseases, and infectious diseases). Chronic restraint stress (RS) and LPS-induce neurobehavioral alterations in rodent models however their interaction studies in association with the pathogenesis of MDD are still unclear. Therefore, the current study was aimed to investigate the LPS influence on chronic RS mediated redox imbalance, apoptosis, and autophagic dysregulation in the hippocampus (HIP) and frontal cortex (FC) of mice brain. Male Balb/c mice were exposed to 28 days consecutive stress (6h/day) with a single-dose LPS challenge (0.83 mg/kg, i.p.) on the last day (Day 28). In addition, we also carried out separate study to understand physiological relevance, where we used the DSS (dextran sulfate sodium), a water soluble polysaccharide (negatively charged) and studied its influence on RS induced neurobehavioral and certain neurochemical anomalies. The obtained results in RS and RS + LPS animal groups showed significant immune dysfunction, depleted monoamines, lowered ATP & NAD level, elevated serum CORT level, serum and brain tissues IL-1ß/TNF-α/IL-6, SOD activity but reduced CAT activity. Furthermore, the redox perturbation was found where significantly upregulated P-NFκB p65, Keap-1, Prx-SO3 and downregulated Nrf2, Srx1, Prx2 protein expression was seen in RS + LPS mice. The apoptosis signaling (P-ASK1, P-p38 MAPK, P-SAPK/JNK, cleaved PARP, cleaved Caspase-3, Cyto-C), autophagic impairment (p62, LC3II/I) were noticed in HIP and FC of RS and RS + LPS grouped animals. Our new findings provide a complex interplay of chemical (LPS) and physical (RS) stressors where both single dose LPS challenge and 3% DSS in drinking water (for 7 days) exaggerated chronic RS-induced inflammation, lowered redox status, increased apoptosis and dysregulated autophagy leading drastic neurobehavioral alterations in the mice.


Assuntos
Transtorno Depressivo Maior , Lipopolissacarídeos , Animais , Apoptose , Autofagia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA