Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199378

RESUMO

Iron-sulfur clusters are essential to almost every life form and utilized for their unique structural and redox-targeted activities within cells during many cellular pathways. Although there are three different Fe-S cluster assembly pathways in prokaryotes (the NIF, SUF and ISC pathways) and two in eukaryotes (CIA and ISC pathways), the iron-sulfur cluster (ISC) pathway serves as the central mechanism for providing 2Fe-2S clusters, directly and indirectly, throughout the entire cell in eukaryotes. Proteins central to the eukaryotic ISC cluster assembly complex include the cysteine desulfurase, a cysteine desulfurase accessory protein, the acyl carrier protein, the scaffold protein and frataxin (in humans, NFS1, ISD11, ACP, ISCU and FXN, respectively). Recent molecular details of this complex (labeled NIAUF from the first letter from each ISC protein outlined earlier), which exists as a dimeric pentamer, have provided real structural insight into how these partner proteins arrange themselves around the cysteine desulfurase, the core dimer of the (NIAUF)2 complex. In this review, we focus on both frataxin and the scaffold within the human, fly and yeast model systems to provide a better understanding of the biophysical characteristics of each protein alone and within the FXN/ISCU complex as it exists within the larger NIAUF construct. These details support a complex dynamic interaction between the FXN and ISCU proteins when both are part of the NIAUF complex and this provides additional insight into the coordinated mechanism of Fe-S cluster assembly.


Assuntos
Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/genética , Ferro/metabolismo , Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ligação Proteica/genética , Frataxina
2.
Histochem Cell Biol ; 153(6): 469-480, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193594

RESUMO

Expensive and time-consuming approaches of immunoelectron microscopy of biopsy tissues continues to serve as the gold-standard for diagnostic pathology. The recent development of the new approach of expansion microscopy (ExM) capable of fourfold lateral expansion of biological specimens for their morphological examination at approximately 70 nm lateral resolution using ordinary diffraction limited optical microscopy, is a major advancement in cellular imaging. Here we report (1) an optimized fixation protocol for retention of cellular morphology while obtaining optimal expansion, (2) an ExM procedure for up to eightfold lateral and over 500-fold volumetric expansion, (3) demonstrate that ExM is anisotropic or differential between tissues, cellular organelles and domains within organelles themselves, and (4) apply image analysis and machine learning (ML) approaches to precisely assess differentially expanded cellular structures. We refer to this enhanced ExM approach combined with ML as differential expansion microscopy (DiExM), applicable to profiling biological specimens at the nanometer scale. DiExM holds great promise for the precise, rapid and inexpensive diagnosis of disease from pathological specimen slides.


Assuntos
Fígado/citologia , Músculo Esquelético/citologia , Nanopartículas/química , Imagem Óptica , Animais , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Polímeros/síntese química , Polímeros/química , Ratos
3.
Histochem Cell Biol ; 153(4): 279-285, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31901974

RESUMO

Swelling of secretory vesicles is critical for the regulated release of intra-vesicular contents from cells during secretion. At the secretory vesicle membrane of the exocrine pancreas and neurons, GTP-binding G proteins, vH+-ATPase, potassium channels and AQP water channels, are among the players implicated in vesicle volume regulation. Here we report in the endocrine insulin-secreting MIN6 cells, the similar requirement of vH+-ATPase-mediated intracellular acidification on glucose-stimulated insulin release. MIN6 cells exposed to the vH+-ATPase inhibitor Bafilomycin A show decreased acidification of the cytosolic compartment that include insulin-carrying granules. Additionally, a loss of insulin granules near the cell plasma membrane following Bafilomycin A treatment, suggests impaired transport of insulin granules and consequent decrease in glucose-stimulated insulin secretion and accumulation of intracellular insulin. These results suggest that vH+-ATPase-mediated intracellular acidification is required for insulin secretion in beta cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Animais , Células Cultivadas , Glucose/antagonistas & inibidores , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Macrolídeos/farmacologia , Camundongos
4.
J Phys Chem B ; 123(32): 6997-7005, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31322890

RESUMO

The cell plasma membrane is a highly dynamic organelle governing a wide range of cellular activities including ion transport, secretion, cell division, growth, and development. The fundamental process involved in the addition of new membranes to pre-existing plasma membranes, however, is unclear. Here, we report, using biophysical, morphological, biochemical, and molecular dynamic simulations, the selective incorporation of proteins and lipids from the cytosol into the cell plasma membrane dictated by membrane stretch and composition. Stretching of the cell membrane as a consequence of volume increase following incubation in a hypotonic solution and results in the incorporation of cytosolic proteins and lipids into the existing plasma membrane. Molecular dynamic simulations further confirm that increased membrane stretch results in the rapid insertion of lipids into the existing plasma membrane. Similarly, depletion of cholesterol from the cell plasma membrane selectively alters the incorporation of lipids into the membrane.


Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citosol/metabolismo , Eritrócitos/metabolismo , Insulinoma/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Camundongos , Simulação de Dinâmica Molecular , Neoplasias Pancreáticas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
5.
Nano Lett ; 18(11): 7021-7029, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346792

RESUMO

Ions greatly influence protein structure-function and are critical to health and disease. A 10, 000-fold higher calcium in the sarcoplasmic reticulum (SR) of muscle suggests elevated calcium levels near active calcium channels at the SR membrane and the impact of localized high calcium on the structure-function of the motor protein myosin. In the current study, combined quantum dot (QD)-based nanothermometry and circular dichroism (CD) spectroscopy enabled detection of previously unknown enthalpy changes and associated structural remodeling of myosin, impacting its function following exposure to elevated calcium. Cadmium telluride QDs adhere to myosin, function as thermal sensors, and reveal that exposure of myosin to calcium is exothermic, resulting in lowering of enthalpy, a decrease in alpha helical content measured using CD spectroscopy, and the consequent increase in motor efficiency. Isolated muscle fibers subjected to elevated levels of calcium further demonstrate fiber lengthening and decreased motility of actin filaments on myosin-functionalized substrates. Our results, in addition to providing new insights into our understanding of muscle structure-function, establish a novel approach to understand the enthalpy of protein-ion interactions and the accompanying structural changes that may occur within the protein molecule.


Assuntos
Compostos de Cádmio/química , Cálcio/química , Dicroísmo Circular , Miosinas/química , Pontos Quânticos/química , Telúrio/química , Termometria , Animais , Camundongos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
6.
Histochem Cell Biol ; 150(4): 395-401, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30145684

RESUMO

Valproate (VPA), an FDA approved anti-epileptic drug with a half-life of 12-18 h in humans, has been shown to perturb the vacuolar proton pump (vH+-ATPase) function in yeasts by inhibiting myo-inositol phosphate synthase, the first and rate-limiting enzyme in inositol biosynthesis, thereby resulting in inositol depletion. vH+-ATPase transfers protons (H+) across cell membranes, which help maintain pH gradients within cells necessary for various cellular functions including secretion. This proton pump has a membrane (V0) and a soluble cytosolic (V1) domain, with C-subunit associated with V1. In secretory cells such as neurons and insulin-secreting beta cells, vH+-ATPase acidifies vesicles essential for secretion. In this study, we demonstrate that exposure of insulin-secreting Min6 cells to a clinical dose of VPA results in inositol depletion and loss of co-localization of subunit C of vH+-ATPase with insulin-secreting granules. Consequently, a reduction of glucose-stimulated insulin secretion is observed following VPA exposure. These results merit caution and the reassessment of the clinical use of VPA.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ácido Valproico/farmacologia , Animais , Secreção de Insulina , Camundongos , Células Tumorais Cultivadas , Ácido Valproico/química
7.
Semin Cell Dev Biol ; 73: 57-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28779980

RESUMO

A wide range of cellular activities including protein folding and cell secretion, such as neurotransmission or insulin release, are all governed by intracellular pH homeostasis, underscoring the importance of pH on critical life processes. Nano- scale pH measurements of cells and biomolecules therefore hold great promise in understanding a plethora of cellular functions, in addition to disease detection and therapy. In the current study, a novel approach using cadmium telluride quantum dots (CdTeQDs) as pH sensors, combined with fluorescent imaging, spectrofluorimetry, atomic force microscopy (AFM), and Western blot analysis, enabled the study of intracellular pH dynamics at 1 milli-pH sensitivity and 80nm pixel resolution, during insulin secretion. Additionally, the pH-dependent interaction between membrane fusion proteins, also called the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE), was determined. Glucose stimulation of CdTeQD-loaded insulin secreting Min-6 mouse insulinoma cell line demonstrated the initial (5-6min) intracellular acidification reflected as a loss in QD fluorescence, followed by alkalization and a return to resting pH in 10min. Analysis of the SNARE complex in insulin secreting Min-6 cells demonstrated an initial gain followed by loss of complexed SNAREs in 10min. Stabilization of the SNARE complex at low intracellular pH is further supported by results from studies utilizing both native and AFM measurements of liposome-reconstituted recombinant neuronal SNAREs, providing a molecular understanding of the role of pH during cell secretion.


Assuntos
Fluorescência , Insulinoma/metabolismo , Insulinoma/patologia , Fusão de Membrana , Microscopia de Força Atômica , Imagem Óptica , Animais , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular
8.
Nano Lett ; 17(2): 1262-1268, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28112520

RESUMO

Despite recent advances in thermometry, determination of temperature at the nanometer scale in single molecules to live cells remains a challenge that holds great promise in disease detection among others. In the present study, we use a new approach to nanometer scale thermometry with a spatial and thermal resolution of 80 nm and 1 mK respectively, by directly associating 2 nm cadmium telluride quantum dots (CdTe QDs) to the subject under study. The 2 nm CdTe QDs physically adhered to bovine cardiac and rabbit skeletal muscle myosin, enabling the determination of heat released when ATP is hydrolyzed by both myosin motors. Greater heat loss reflects less work performed by the motor, hence decreased efficiency. Surprisingly, we found rabbit skeletal myosin to be more efficient than bovine cardiac. We have further extended this approach to demonstrate the gain in efficiency of Drosophila melanogaster skeletal muscle overexpressing the PGC-1α homologue spargel, a known mediator of improved exercise performance in humans. Our results establish a novel approach to determine muscle efficiency with promise for early diagnosis and treatment of various metabolic disorders including cancer.


Assuntos
Compostos de Cádmio/química , Miosinas Cardíacas/química , Músculo Esquelético/fisiologia , Pontos Quânticos/química , Miosinas de Músculo Esquelético/química , Telúrio/química , Trifosfato de Adenosina/química , Animais , Bovinos , Drosophila melanogaster/fisiologia , Fluorescência , Hidrólise , Masculino , Nanotecnologia , Tamanho da Partícula , Coelhos , Miosinas de Músculo Esquelético/fisiologia , Propriedades de Superfície , Temperatura , Termometria
9.
Micron ; 92: 25-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27846432

RESUMO

Efficient drug delivery is critical to therapy. Using electron microscopy, X-ray, and light microscopy, we have characterized functionalized superparamagnetic iron oxide (SPIO) nanoparticles, and determined their ability for rapid entry and release of the cancer drug doxorubicin in human pancreatic cancer cells. Dextran-coated SPIO nanoparticle ferrofluid, functionalized with the red-autofluorescing doxorubicin and the green-fluorescent dye fluorescein isothiocyanate as a reporter, enables tracking the intracellular nanoparticle transport and drug release. This engineered nanoparticle enables a >20 fold rapid entry and release of the drug in human pancreatic cancer cells, holding therapeutic potential as an advanced drug delivery and imaging platform. The low extracellular pH of most tumors precluding the entry of a number of weakly basic drugs such as doxorubicin, conferring drug resistance, can now be overcome.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanopartículas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Compostos Férricos/química , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescência , Humanos , Nanopartículas de Magnetita/estatística & dados numéricos , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico
10.
Endocrinology ; 157(1): 54-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26523491

RESUMO

Supramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic ß-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished. Earlier studies on mouse insulin-secreting Min6 cells report 100-nm porosome complexes composed of nearly 30 proteins. In the current study, porosomes have been functionally reconstituted for the first time in live cells. Isolated Min6 porosomes reconstituted into live Min6 cells demonstrate augmented levels of porosome proteins and a consequent increase in the potency and efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin secretion 48 hours after reconstitution, reflects on the remarkable stability and viability of reconstituted porosomes, documenting the functional reconstitution of native porosomes in live cells. These results, establish a new paradigm in porosome-mediated insulin secretion in ß-cells.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Microdomínios da Membrana/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Animais , Linhagem Celular Tumoral , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/ultraestrutura , Microdomínios da Membrana/enzimologia , Microdomínios da Membrana/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estabilidade Proteica , Transporte Proteico , Espalhamento a Baixo Ângulo , Taxa Secretória , Proteína 25 Associada a Sinaptossoma/isolamento & purificação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA