Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622115

RESUMO

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Assuntos
Proteínas de Ciclo Celular , Proteômica , Ciclo Celular/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Estabilidade Proteica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Mitose
2.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711754

RESUMO

Cyclin-dependent kinases (CDKs) mediated phosphorylation inactivates the anaphase-promoting complex (APC/CCDH1), an E3 ubiquitin ligase that contains the co-activator CDH1, to promote G1/S transition. PIN1 is a phosphorylation-directed proline isomerase and a master cancer signaling regulator. However, little are known about APC/CCDH1 regulation after phosphorylation and about PIN1 ubiquitin ligases. Here we uncover a domain-oriented reciprocal inhibition that controls the timely G1/S transition: The non-phosphorylated APC/CCDH1 E3 ligase targets PIN1 for degradation in G1 phase, restraining G1/S transition; APC/CCDH1 itself, after phosphorylation by CDKs, is inactivated by PIN1-catalyzed isomerization, promoting G1/S transition. In cancer, PIN1 overexpression and APC/CCDH1 inactivation reinforce each other to promote uncontrolled proliferation and tumorigenesis. Importantly, combined PIN1- and CDK4/6-inhibition reactivates APC/CCDH1 resulting in PIN1 degradation and an insurmountable G1 arrest that translates into synergistic anti-tumor activity against triple-negative breast cancer in vivo. Reciprocal inhibition of PIN1 and APC/CCDH1 is a novel mechanism to control timely G1/S transition that can be harnessed for synergistic anti-cancer therapy.

3.
Biomol NMR Assign ; 5(1): 75-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20927612

RESUMO

Small Ubiquitin-like MOdifiers (SUMOs) are ubiquitin-like proteins known to covalently modify large number of cellular proteins. The mammalian SUMO family includes four paralogues, SUMO-1 through SUMO-4. Death-associated protein-6, Daxx, is a 740 residue important transcription corepressor known to represses transcriptional potential of several sumolyted transcription factors. Daxx also plays important role in apoptosis. Both terminals of Daxx harbor separate SUMO Interaction Motifs (SIM), which mediate its interaction with SUMO and hence the sumolyted transcription factors. The C-terminal SIM of Daxx preferentially binds SUMO-1. Practically complete (1)H, (13)C and (15)N resonance assignments for the complex between SUMO-1 and 20 residue Daxx C-terminal SIM peptide are reported here.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA