Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 684-697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413834

RESUMO

Although autophagy sequesters Mycobacterium tuberculosis (Mtb) in in vitro cultured macrophages, loss of autophagy in macrophages in vivo does not result in susceptibility to a standard low-dose Mtb infection until late during infection, leaving open questions regarding the protective role of autophagy during Mtb infection. Here we report that loss of autophagy in lung macrophages and dendritic cells results in acute susceptibility of mice to high-dose Mtb infection, a model mimicking active tuberculosis. Rather than observing a role for autophagy in controlling Mtb replication in macrophages, we find that autophagy suppresses macrophage responses to Mtb that otherwise result in accumulation of myeloid-derived suppressor cells and subsequent defects in T cell responses. Our finding that the pathogen-plus-susceptibility gene interaction is dependent on dose has important implications both for understanding how Mtb infections in humans lead to a spectrum of outcomes and for the potential use of autophagy modulators in clinical medicine.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Linfócitos T , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Autofagia
2.
Cell Death Discov ; 9(1): 28, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693853

RESUMO

Endometriosis is a pathological condition of the female reproductive tract characterized by the existence of endometrium-like tissue at ectopic sites, affecting 10% of women between the age 15 and 49 in the USA. However, currently there is no reliable non-invasive method to detect the presence of endometriosis without surgery and many women find hormonal therapy and surgery as ineffective in avoiding the recurrences. There is a lack of knowledge on the etiology and the factors that contribute to the development of endometriosis. A growing body of recent evidence suggests an association between gut microbiota and endometriosis pathophysiology. However, the direct impact of microbiota and microbiota-derived metabolites on the endometriosis disease progression is largely unknown. To understand the causal role of gut microbiota and endometriosis, we have implemented a novel model using antibiotic-induced microbiota-depleted (MD) mice to investigate the endometriosis disease progression. Interestingly, we found that MD mice showed reduced endometriotic lesion growth and, the transplantation of gut microbiota by oral gavage of feces from mice with endometriosis rescued the endometriotic lesion growth. Additionally, using germ-free donor mice, we indicated that the uterine microbiota is dispensable for endometriotic lesion growth in mice. Furthermore, we showed that gut microbiota modulates immune cell populations in the peritoneum of lesions-bearing mice. Finally, we found a novel signature of microbiota-derived metabolites that were significantly altered in feces of mice with endometriosis. Finally, we found one the altered metabolite, quinic acid promoted the survival of endometriotic epithelial cells in vitro and lesion growth in vivo, suggesting the disease-promoting potential of microbiota-derived metabolites. In summary, these data suggest that gut microbiota and microbiota-derived metabolome contribute to lesion growth in mice, possibly through immune cell adaptations. Of translational significance, these findings will aid in designing non-invasive diagnostics using stool metabolites for endometriosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA